期刊文献+

羧甲基葡聚糖磁性纳米颗粒与脂质体介导人可溶性fms-样酪氨酸激酶受体-1的转染比较 被引量:2

Comparison of the transfection effects on soluble fins-like tyrosine kinase receptor-1 gene mediated by carboxymethylated dextran coated nanoparticle and lipofectamineTM 2000
原文传递
导出
摘要 目的 比较羧甲基化葡聚糖(CMD)磁性纳米颗粒与脂质体LipofectamineTM2000对人可溶性fms-样酪氨酸激酶受体-1(sFlt-1)第2~4区基因片段的转染率.方法 构建真核表达质粒编码增强型绿色荧光蛋白质粒(pcDNA3.1-EGFP)/sFlt-1(2~4),采用酶切、电泳及基因测序鉴定.将实验分为磁颗粒组、脂质体组和未转染对照组进行.转染后24、48 h,倒置相差荧光显微镜下观察细胞绿色荧光分布;流式细胞仪检测细胞绿色荧光表达率;逆转录聚合酶链反应(RT-PCR)法和免疫蛋白印迹(Western blot)法检测sFlt-1(2-4)mRNA和蛋白表达;噻唑蓝(MTT)比色法观测细胞生长情况,计算各组细胞相对增长率(RGR);Hoeehst细胞核染色法观察各组细胞凋亡情况.结果 重组质粒pcDNA3.1/sFlt-1(2~4)酶切产物在琼脂糖凝胶电泳时出现大小为915碱基对的条带.流式细胞仪检测发现,磁颗粒组平均转染率为45%,脂质体组平均转染率21%;二者比较,差异有统计学意义(t=2.541,P〈0.05).RT-PCR和Western blot观察发现,转染后48 h磁颗粒组细胞sFlt-1(2~4)mRNA和蛋白表达均明显高于脂质体组(t=2.454,2.398;P值均〈0.05).转染后24、48 h,磁颗粒组RGR与未转染对照组间差异无统计学意义(t=1.436,P〉0.05),脂质体组RGR与未转染对照组及磁颗粒组间差异均有统计学意义(t=2.412,2.545,P值均〈0.05);磁颗粒组细胞凋亡率与未转染对照组间差异无统计学意义(t=1.436,P〉0.05),与脂质体组间差异有统计学意义(t=2.236,P〈0.05).结论 CMD磁性颗粒较脂质体LipofeetamineTM2000可获得更高的sFlt-1(2~4)基因片段转染率. Objective To compare the transfection effects on soluble fins-like tyrosine kinase receptor1 (sFlt-1) gene (2-4 transcellular region) mediated by carboxymethylated dextran coated nanoparticle and lipofectamineTM 2000. Methods The plasmid pcDNA3. 1-EGFP/sFlt-1(2-4) was constructed and assessed by enzyme cut, electrophoresis, and genetic sequencing. Three groups were divided: nanoparticle group,lipofectamine group, and non-transfeeted group. Twenty-four and 48 hours after the transfection, the distribution of cellular green fluorescence was oberved under the inverted phase contrast fluorescence microseope; the expression rate of green fluorescence was measured by flow cytometry; the expression of sFlt-1(2-4) mRNA and the protein was detected by reverse transcription-polymerase chain reaction (RTPCR) and Western blot; the growth of the cells was observed by methyl thiazolyl tetrazolium (MTT)colorimetry and the relative growth rate (RGR) of the cells in each group was ealeulated; the cellular apoptosis in each group was detected by Hoechst staining. Results The sequence of sFlt-1(2-4) gene was equal to 915 base pair (bp). The transfection rate was 45 % in nanoparticle group and 21% in lipofectamine group; the difference between the two groups was significant (t = 2. 541, P〈0.05). Forty-eight hours after the transfection, the expression of sFlt-1 (2-4)mRNA and protein was obviously higher in nanopartiele group than that in lipofeetamine group (t= 2.454, 2.398; P〈0.05) . Twenty-four and 48 hours after the transfection, the difference of RGR of the cells between nanoparticle and non-transfected group was not significant (t=1. 436, P〉0. 05); the RGR in lipofectamine group differed much from that in nontransfected and nanoparticle group (t= 2. 412,2. 545; P〈0. 05) ; the difference of cellular apoptosis was not significant between nanoparticle and non-transfected group (t = 1. 436, P 〉 0. 05), but significant between nanoparticle and lipofectamine group (t= 2. 236, P〈0.05). Conclusion The transfection rate of sFlt-1(2-4) mediated by carboxymethylated dextran coated nanoparticle was higher than that mediated by lipofectamineTM 2000.
出处 《中华眼底病杂志》 CAS CSCD 北大核心 2010年第3期231-235,共5页 Chinese Journal of Ocular Fundus Diseases
基金 上海市科委登山计划(064119543)
关键词 葡聚糖类 纳米粒子 脂质体 基因转移技术 血管内皮生长因子受体1 Glucans Nanoparticles Liposomes Gene transfer techniques Vascular endothelial growth factor receptor-1
  • 相关文献

参考文献17

  • 1Wang X,Wang G,Wang Y.Intravitreous vascular endothelial growth factor and hypoxia-inducible factor 1α in patients with proliferative diabetic retinopathy.Am J Ophthalmol,2009,148:883-889.
  • 2Merlak M,Kovacevic D,Balog T,et al.Expression of vascular endothelial growth factor in proliferative diabetic retinopathy.Coil Antropol,2008,32(Suppl 2):39-43.
  • 3Shibuya M.Structure and function of VEGF/VEGF-receptor system involved in angiogenesis.Cell Struet Funet,2001,26:25-35.
  • 4江丹,吴强,宋蓓雯,杜新华,贾丽丽.两种磁性纳米颗粒介导人sFIt-1基因片段转染的比较[J].国际眼科杂志,2009,9(2):265-270. 被引量:1
  • 5Barleon B,Totzke F,Herzog C,et al.Mapping of the sites for ligand binding and receptor dimerizatio at the extracellular domain of the vascular endothelial growth factor receptor FLT1.J Biol Chem.1997,272:10382-10388.
  • 6Uchida E,Mizuguchi H,Ishii-Watabe A,et al.Comparison of the efficiency and safety of non-viral vector-mediated gene transfer into a wide range of human cells.Biol Pharm Bulh2002,25:891-897.
  • 7Mahato RI,Anwer K,Tagliaferri F,et al.Biodistribution and gene expression of lipid/plasmid complexes after systemic administration.Hum Gene Ther,1998,9:2083-2099.
  • 8Sakurai F,Nishioka T,Saito H,et al.Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous root in mice:the role of the neutral helper lipid.Gene Ther,2001,8:677-686.
  • 9Yang SY,Sun JS,Liu CH,et al.Ex vivo magnetofeetion with magnetic nanoparticles:a novel platform for nonviral tissue engineering.Artificial Organs,2008,32:195-204.
  • 10Huth S,Lausier J,Gersting SW,et al.Insights into the mechanism of magnetofection using PEI-based magnetoleetions for gene transfer.Gene Med,2004,6:923-936.

二级参考文献13

  • 1Hildebrandt IJ, Iyer M, Wagner E, et al. Optical imaging of transferrin targeted PEI/DNA eomplexes in living subjeets. Gene Ther 2003 ; 10 (9) :758-764.
  • 2Jiang J, Xia XB, Xu HZ, et al. Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-lalpha and VEGF.J Cell Physiol 2009 ;218( 1 ) :66-74.
  • 3Pechan P, Rubin H, Lokason M, et al. Novel anti-VEGF chimeric molecules delivered by AVV vectors for inhibition of retinal neovascularization. Gene Ther 2009 ;16( 1 ) : 10-16.
  • 4Godbey WT, Mikos AG. Recent progress in gene delivery using non-viral transfer complexes.J Control Release 2001 ;72( 1-3 ) :115-125.
  • 5Yang SY, Sun JS, Liu CH, et al. Ex vivo magnetofection with magnetic nanopartieles: a novel platform for nonviral tissue engineering. Artif Organs 2008 ;32 ( 3 ) : 195-204.
  • 6Schillinger U,Brill T,Rudolph C, et al. Advances in magnetofection-magnetically guided nucleic acid delivery. Magnetism and magnetic, materials 2005 ;293( 1 ) :501-508.
  • 7Scherer F, Antou M, Schillinger U, et al. Magnetofection:enhancing and targeting gene delivery by magnetic forcein vitro and in vitro. Gene Ther 2002 ; 9 ( 2 ) : 102-109.
  • 8Lee Ctt, Kim EY, Jeon K, et al. Simple,, efficient, and reproducible gene transfection of mouse embi-yonie stein cells by magnetofeetinn.Stem cells Dev 2008;17(1 ) :133-141.
  • 9Chen J, Gao X, Hu K, et al. Galactose-poly( ethylene glycol)-polyeth- ylenimine for improved lung gene transfer. Biochem Biophys Res Commun 2008 ;375 ( 3 ) :378-383.
  • 10Furuhata M, Danev R, Naqayama K, et al. Decaarginine-PEG-artificial lipid/DNA complex for gene delivery:nanostmcture and transfection efficiency. Nanosci nanotechnol 2008 ;8 ( 5 ) :2308-2315.

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部