摘要
目的:本文对GACV模型进行改进,并用改进的模型对医学彩色细胞图像进行分割。方法:本文在GACV模型基础上加入了贝叶斯最优分类器,得到了结合贝叶斯最优分类器的GACV模型,并用该模型对医学彩色细胞图像进行分割。结果:应用本文提出的模型分割3组不同特点的医学彩色细胞图像,分割结果显示,该模型能正确将细胞从不同噪声环境中分割出来。结论:结合贝叶斯最优分类器的GACV模型对弱边界,噪声以及复杂背景有很强的鲁棒性可以有效、准确的分割医学彩色细胞图像。
Objective: In this article, we improve the GACV model and applied the improved model to medical color cell image segmentation. Methods: In this paper, by applying bayesian optimal classifier to GACV model, we can get a new model and applied this model to medical color image segmentation. Results: we applied the improved model to 3 groups of medical color cell image. The results show that the improved model can correctly separate out the cells from different noise environments. Conclusion: The improved model has strong robustness against weak border,noise and complex backgroud and can segment the medical color cell image effectively and accurately.
出处
《中国医学物理学杂志》
CSCD
2010年第3期1892-1895,共4页
Chinese Journal of Medical Physics