期刊文献+

背景区域对统计匹配滤波探测器性能的影响 被引量:1

The Influence of Varying Background Regions on Statistical Matched Filter Detection Algorithms
下载PDF
导出
摘要 介绍2种典型的统计匹配滤波器算法:自适应一致性估计(ACE)与约束能量最小化(CEM)。实验选取3种不同的背景区域(全景、除去目标的全景及部分均质场景)并计算其协方差,利用受试者工作特性(ROC)曲线中给定虚警概率下的检出概率(DR@FAR)和平均检出概率(ADR)指标,比较分析了背景区域变化对ACE与CEM算法目标探测性能的影响。 Statistical matched filter detection algorithms can be applied to target detection in hyperspectral imagery.The calculation of the background covariance matrix is used in any statistical matched filters,including Adaptive Coherence Estimator(ACE) and Constrained Energy Minimization(CEM) presented in this paper.Experiments on the calculation of the background covariance matrix from different background regions and the utilization of ROC curve give a comparative analysis of the problem as to how different background regions affect the detection performance of ACE and CEM.
出处 《国土资源遥感》 CSCD 2010年第2期26-29,共4页 Remote Sensing for Land & Resources
关键词 高光谱图像 目标探测 ROC曲线 性能指标 背景协方差矩阵 Hyperspectral imagery Target detection ROC curve Performance metrics Background covariance matrix
  • 相关文献

参考文献5

  • 1Johnson R A,Wichern D W.Applied Multivariate Statistical Analysis[M].Englewood Cliffs,NJ:Fifth edition,Prentice Hall,2002.
  • 2Conte E,Lops M,Ricci G.Asumptotically Optimum Radar Detection in Compound-Gaussian Clutter[J].IEEE Transactions on Aerospace and Electronic Systems,1995,31:617-625.
  • 3Manolakis D,Shaw G,Keshave N.Comparative Analysis of Hyperspectral Adaptive Matched Filter Detectors[C] //Shen S S,Descour M R.SPIE Algorithms for Multispectral,Hyperspectral,and Ultraspectral Imagery VI.Washington:[s.n.] ,2000,4049:2-17.
  • 4Farrand W H,Harsanyi J C.Mapping the Distribution of Mine Tailings in the Coeur d' Alene River Valley,Idaho Through the Use of Constrained Energy Minimization Technique[J].Remote Sensing of the Environment,1997,59:64-76.
  • 5Bajorski P,Ientilucci E J,Schott J R.Comparison of Basis-vector Selection Methods for Target and Background Subspaces as Applied to Subpixel Target Detection[C] //Shen S S,Lewis P E.SPIE Algorithms and Technologies for Multispectral,Hyperspectral,and Ultraspectral Imagery X.Orlando:[s.n.] ,2004,5425:97-108.

同被引文献12

  • 1耿修瑞,赵永超.高光谱遥感图像小目标探测的基本原理[J].中国科学(D辑),2007,37(8):1081-1087. 被引量:20
  • 2He Y L, Liu D Z, Yi S H. A novel endmember extraction and discrimination algorithm for target detection in hyperspectral imagei3, [ J ]. Journal of Optics,2011,13 ( 8 ) : 1 - 6.
  • 3Harsanyi J C. Detection and classification of subpixel spectral signatures in hyperspectral image sequences [ D ]. Washington: University of Maryland, 1993.
  • 4Stefania M ,Marco D. A tutorial overview of anomaly detection in hyperspectral images [ J]. IEEE A&E Systems Magazine,2010, 25(7) :5 -27.
  • 5Chang C I. Muhiparameter receiver operating characteristic analysis for signal detection and classification [ J ]. IEEE Sensors Journal ,2010,10(3 ) :423 - 442.
  • 6Chang C I. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis [ J ]. IEEE Transactions on Information Theory,2000,46 ( 5 ) : 1927 - 1932.
  • 7Du Y Z, Chang C I, Hsuan R. New hyperspectral similarity measure for spectral characterization[ J]. Optical Engineering, 2004,43 ( 8 ) : 1777 - 1786.
  • 8Chang C I. Hyperspectral imaging: techniques for spectral detection and classification [ M ]. New York: Kiuwer Academic Publishers ,2003.
  • 9何元磊,刘代志,易世华,黄世奇.面向目标探测的高光谱图像层次聚类波段选择[J].仪器仪表学报,2011,32(4):825-830. 被引量:12
  • 10王静荔.波段最大筛选法及其在高光谱目标探测中的应用[J].红外与激光工程,2012,41(6):1514-1519. 被引量:7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部