期刊文献+

功率谱熵在痫性发作大鼠脑电检测中的应用研究 被引量:1

Study about power spectral entropy and its application in EEG in epileptic rats
下载PDF
导出
摘要 目的:研究功率谱熵在痫性发作大鼠脑电检测中的应用。方法:采用青霉素在大鼠海马微注射制备急性痫性发作模型,以深部电极记录大鼠原始脑电信号,将24只SD大鼠随机分成四组,即正常组(A),对照组(B),单电极组(C),多电极组(D)。C、D组大鼠经致痫后观察未发作期、发作前期、发作期和发作后期四期脑电信号的变化,运用谱熵对四期脑电信号进行分析,并与A、B组进行对比。结果:C组和D组脑电功率谱熵显示两组发作期与未发作期、发作前期、发作后期比较有显著差异(P<0.05),发作期明显低于其它各期;未发作期和发作前期相比有明显差异(P<0.05),发作前期较未发作期降低;将D组大鼠海马致痫灶(a)及其同侧附近(b)、对侧(c)三点发作各期脑电功率谱熵进行对比分析,发作前期和发作期a、b、c三点比较有明显差异(P<0.05),a点最低,c点的功率谱熵值最高。结论:功率谱熵可以预报痫性发作并可对癫痫病灶的定位提供一定的帮助。
出处 《中国应用生理学杂志》 CAS CSCD 北大核心 2010年第2期170-171,198,共3页 Chinese Journal of Applied Physiology
基金 湖南省自然科学基金资助项目(06JJ50034)
关键词 癫痫 脑电图 功率谱熵 epilepsy electronencephalography(EEG) power spectral entropy(PSE)
  • 相关文献

参考文献4

  • 1徐进,郑崇勋,刘雪良,和卫星.不同麻醉深度下大鼠脑活动的复杂性分析[J].西安交通大学学报,2006,40(6):738-741. 被引量:5
  • 2Burioka N, Gomelissen G, Maegaki Y. Approximate entropy of the Electroencephalogram in healthy awake subjects and absence epilepsy patients [ J ]. Clin EEG Neurosci, 2005, 36 (3) : 188-193.
  • 3白冬梅,邱天爽,李小兵.样本熵及在脑电癫痫检测中的应用[J].生物医学工程学杂志,2007,24(1):200-205. 被引量:25
  • 4Widman G, Binmann D, Lehnertz K, et al. Reduced signal complexity of intracellular recordings: a precursor for epileptiform activity[J]. Brain Res, 1999, 836(1-2): 156-163.

二级参考文献21

  • 1Rampil I J.A primer for EEG signal processing in anesthesia[J].Anesthesiology,1998,89(4):980-1002.
  • 2Rubin M A,Freeman H.Brain potential changes in man during cyclopropane anacsthcsia[J].J Neurophysiol,1940,3:33-42.
  • 3Thomsen C E,Christensen K N,Rosenflack A.Computerized monitoring of depth of anesthesia with isofluranc[J].Br J Anesthesia,1989,63:36-43.
  • 4Drummond J C,Brann C A.A comparison of median frequency,spectral edge frequency,a frequency band power ratio,total power and dominance shift in the determination of depth of anesthesia[J].Acta Anaesthesiologica Scandinavica,1991,35:693-699.
  • 5Lempel A,Ziv J.On the complexity of finite sequences[J].IEEE Trans on Information Theory,1976,22(1):75-81.
  • 6Kaspar F,Schuster H G.Easily calculable measure for the complexity of spatiotemporal patterns[J].Physical Review:A,1987,36(2):842-848.
  • 7Rezek A,Roberts S J.Stochastic complexity measures for physiological signal analysis[J].IEEE Trans on Biomedical Engineering,1998,45(9):1186-1191.
  • 8Xu Jin,Zheng Chongxun,Jing Guixia,et al.Monitoring the depth of anesthesia based on complexity of electroencephalogram[A].2004 IEEE International Workshop on Biomedical Circuits and Systems[C].Singapore:Institute of Electrical and Electronics Engineers Computer Society,2004.9-12
  • 9Gotman J,Gloor P.Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG.Electroencephalography and Clinical Neurophysiology,1976; 41:513
  • 10Frost JD.Automatic recognition and characterization of epileptiform discharges in the human EEG.Journal of Clinical of Neurophysiology,1985; 2:231

共引文献26

同被引文献17

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部