期刊文献+

薹菜CYP79B_5基因的克隆及原核表达 被引量:4

Molecular cloning and prokaryotic expression of CYP79B_5 from tai-tsai
下载PDF
导出
摘要 以薹菜品种京研薹菜叶片cDNA为模板,采用RT-PCR技术,获得了编码薹菜CYP79B5基因全序列1 847 bp,包含有1 620 bp的开放阅读框,编码540个氨基酸。以薹菜基因组DNA为模板,获得了2 112 bp的目的片段。经比对发现其氨基酸序列与油菜、白芥、拟南芥等CYP79B5编码的氨基酸序列具有较高同源性,与油菜同源性达100%。经过生物信息学分析,发现所推导的氨基酸序列具有明显的CYP蛋白信号域,且可以在SWISS-MODEL数据库中搜索到与之相近的三维结构。扩增CYP79B5完整的编码区序列,构建pET-24α(+)重组质粒转化大肠杆菌Rosetta(DE3),IPTG诱导融合蛋白高效表达,SDS-PAGE电泳检测发现在相对分子质量64 000处有一特异条带,与预期的目的产物蛋白带大小一致。 CYP79B5 gene was cloned from Jingyan tai-tsai by RT-PCR.The full-length cDNA of CYP79B5 was 1 847 bp long,with a 1 620 bp open reading frame(ORF)encoding 540 amino acids.2 112 bp fragment was obtained by PCR amplification using genome DNA as template.Blast results showed that the deduced amino acid sequence had high homology to Brassica napus,Sinapis alba and Arabidopsis thaliana.It had 100% identity with that of B.napus.Bioinformatics analysis showed that there was a significant protein signal domain in the deduced amino acid sequence,and a similar 3D structure could be found in the SWISS-MODEL database.The complete coding sequence was amplified by PCR technique.Then the recombinant plasmid pET-24α(+)was constructed,and transformed to Escherichia coli Rosetta(DE3)for expression induced by IPTG.SDS-PAGE analysis revealed that there was a specific band at 64 000,which conformed to the expected molecular weight of the recombinant protein.
出处 《南京农业大学学报》 CAS CSCD 北大核心 2010年第3期31-36,共6页 Journal of Nanjing Agricultural University
基金 山东省良种工程产业化项目
关键词 薹菜 CYP79B5 基因克隆 原核表达 tai-tsai CYP79B5 gene cloning prokaryotic expression
  • 相关文献

参考文献14

  • 1Mithen R. Glucosinolates--biochemistry, genetics and biological activity [J]. Plant Growth Regulation, 2001, 34 (1) : 91 -103.
  • 2Fahey J W, Zalcmann A T, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants [ J ]. Phytochemistry, 2001, 56 (1): 5-51.
  • 3Kushad M M, Brown A F, Kurilich A C, et al. Variation of glucosinolates in vegetable crops of Brassica oleracea [ J ]. J Agric Food Chem, 1999, 47 (4): 1541-1548.
  • 4Rosa E, Heaney K R, Fenwick R, et al. Glucosinolates in crop plants [J]. Horticultural Reviews, 1997, 19:99 -215.
  • 5Fenwiek G R, Heaney R K, Mullin W J. Glueosinolates and their breakdown products in food and food plants [ J]. Critical Reviews in Food Science and Nutrition, 1983, 18:123 -201.
  • 6Wittstock U, Halkier B A. Glucosinolate research in the Arabidopsis era [ J ]. Trends in Plant Science, 2002, 7 (6) : 263 - 270.
  • 7Bak S, Olsen C E, Petersen B L, et al. Metabolic engineering of p-hydroxybenzyl- glucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor [J]. Plant Journal, 1999, 20 (6) : 663 -671.
  • 8Hansen C H, Wittstock U, Olsen C E, et al. Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates [ J ]. The Journal of Biological Chemistry, 2001, 276 (14): 11078-11085.
  • 9Wittstock U, Halkier B A. Cytochrome P450 CYP79A2 from Arabidopsis thaliana L catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate [ J]. The Journal of Biological Chemistry, 2000, 275 (19) : 14659 -14666.
  • 10Mikkelsen M D, Hansen C H, Wittstock U, et al. Cytochrome P450 CYP79B2 from Arabldopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid [ J ]. The Journal of Biological Chemistry, 2000, 275 (43): 33712 -33717.

同被引文献56

  • 1宋廷宇,侯喜林,何启伟,吴春燕,徐苑芳.薹菜、大白菜与白菜营养成分评价[J].山东农业科学,2007,39(5):21-22. 被引量:19
  • 2宋廷宇,侯喜林,何启伟,吴春燕,徐苑芳.不同薹菜品种氨基酸含量分析[J].中国蔬菜,2007(11):8-10. 被引量:7
  • 3Kim T, Hart J, Huh G H, et al. Expression and functional char- acterization of three squalence synthase genes associated with sap- anin biosynthesis in Panax ginseng [ J ]. Plant Cell Physiol, 2011,52(1) :125.
  • 4Jensen K, Mcbller B L. Plant NADPH-cytochrome P450 oxi- doreductases [ J ]. Phytochemistry, 2010, 71 ( 2/3 ) : 132.
  • 5Hugues R, .lean E B, Bjorn H, et al. Cytochrome P450-media- ted metabolic engineering: current progress and future challenges [J]. Curr Opin Plant Biol, 2014, 19:27.
  • 6Schoendorf A, Rithner C D, Williams R M, et al. Molecular clo- ning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from Taxus and functional expression in yeast[ J]. Proc Natl Acad Sci USA, 2001, 98(4) :1501.
  • 7Juan G, Yongjin J Z, Matthew L H. et al. CYP76AHI catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts [ J ]. Proc Natl Acad Sci USA, 2013, 110(29) :12108.
  • 8Song M C, Kim E J, Kim E, et al. Microbial biosynthesis of me- dicinally important plant secondary metabolites [ J ]. Nat Prod Rep, 2014, 31 ( 11 ) : 1497.
  • 9Ajikumar P K, Xiao W H, Tyo K E, et al. lsoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli [J]. Science, 2010, 330:70.
  • 10Kuo SR,Wang TT,Huang TC.Keryotype analysis of some formosan gymnosperms[].TAIWANIA.1972

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部