自仿射集的Hausdorff维数估计
Estimation for Dimensions of Self-affine Sets
摘要
本文主要研究二类自仿射集的维数估计,并在一定条件下得到了这二类自仿射集的Hausdorff维数的上界一个计算方法.
In this paper,we main study the dimensions of two kinds of self-affine sets.Upper bound of two self-affine sets are estimated under certain conditions.
出处
《吉林师范大学学报(自然科学版)》
2010年第2期89-91,共3页
Journal of Jilin Normal University:Natural Science Edition
二级参考文献8
-
1[5]Lalley S P, Gatzouras D. Hausdorff and Box Dimensions of Certain Self-affine Fractals[J]. Indiana Univ. Math. J., 1992,41:533-586.
-
2[1]Hutchinson J E. Fractals and Self-similarity[J].Indiana Univ. Math. J., 1981,30:713-747.
-
3[2]Moran P A P. Additive Functions of Intervals and Hausdorff Measure[J]. Proc.Combridge Philos. Soc.,1946,42:15-23.
-
4[3]Mcmullen C. The Hausdorff Dimension of General Sierpinski Carpets[J]. Nagoya Math. J., 1984,96:1-4.
-
5[4]Bedford T. Dimension and Dynamics for Fractal Recurrent Sets[J].J.London Math. Soc., 1986,33(2):89-100.
-
6[6]Falconer K J. The Hausdorff Dimension of Self-affine Fractals[J]. Math.Proc.Cambridge Philos. Soc., 1988,103:339-350.
-
7[7]Falconer K J. The Dimension of Self-affine Fractals Ⅱ[J].Math.Proc.Combridge Phllos. Soc., 1992,111:169-179.
-
8Falconer K J. Fractal geometry mathematical foundations and applications[M]. N Y: John Willey & Sons,1990.
-
1丁立新,刘忠.子自仿射集的Hausdorff维数[J].海军工程大学学报,2001,13(3):11-14.
-
2商朋见,何卫力.三类自仿集的维数[J].北方交通大学学报,2001,25(3):7-12. 被引量:1
-
3杨虎.大型回归系统的线性估计[J].重庆交通学院学报,1990,9(3):50-58. 被引量:1
-
4张宁,张立卫,肖现涛.奇异值函数的二阶方向导数[J].中国科学:数学,2013,43(2):121-136.
-
5余旌胡.随机自仿射集的Hausdorff维数估计[J].数学物理学报(A辑),2001,21(4):443-452.