期刊文献+

自仿射集的Hausdorff维数估计

Estimation for Dimensions of Self-affine Sets
下载PDF
导出
摘要 本文主要研究二类自仿射集的维数估计,并在一定条件下得到了这二类自仿射集的Hausdorff维数的上界一个计算方法. In this paper,we main study the dimensions of two kinds of self-affine sets.Upper bound of two self-affine sets are estimated under certain conditions.
出处 《吉林师范大学学报(自然科学版)》 2010年第2期89-91,共3页 Journal of Jilin Normal University:Natural Science Edition
关键词 自仿射集 HAUSDORFF维数 奇异值函数 同时可对角化 slef-affine set Hausdorff dimensions singular value function simultaneous diagonalization
  • 相关文献

参考文献2

二级参考文献8

  • 1[5]Lalley S P, Gatzouras D. Hausdorff and Box Dimensions of Certain Self-affine Fractals[J]. Indiana Univ. Math. J., 1992,41:533-586.
  • 2[1]Hutchinson J E. Fractals and Self-similarity[J].Indiana Univ. Math. J., 1981,30:713-747.
  • 3[2]Moran P A P. Additive Functions of Intervals and Hausdorff Measure[J]. Proc.Combridge Philos. Soc.,1946,42:15-23.
  • 4[3]Mcmullen C. The Hausdorff Dimension of General Sierpinski Carpets[J]. Nagoya Math. J., 1984,96:1-4.
  • 5[4]Bedford T. Dimension and Dynamics for Fractal Recurrent Sets[J].J.London Math. Soc., 1986,33(2):89-100.
  • 6[6]Falconer K J. The Hausdorff Dimension of Self-affine Fractals[J]. Math.Proc.Cambridge Philos. Soc., 1988,103:339-350.
  • 7[7]Falconer K J. The Dimension of Self-affine Fractals Ⅱ[J].Math.Proc.Combridge Phllos. Soc., 1992,111:169-179.
  • 8Falconer K J. Fractal geometry mathematical foundations and applications[M]. N Y: John Willey & Sons,1990.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部