期刊文献+

一类二阶m点边值问题的正解存在性 被引量:3

The Existence of Multiple Positive Solutionon for Second-order M-point Boundary Value Problems
下载PDF
导出
摘要 研究一类二阶m点边值问题,u″+a(t)f(u)=0,u(0)-=0,u(1)-sum from i=1 to m-2 (α_iu(ζ_i)=b),正解的存在性.应用Schauder不动点定理和不动点指数定理,在适当条件下建立了这类边值问题存在正解的充分条件. The existence criteria for multiple positive solutions for second-order m-pointboundary value problems are obtained by using Krasnoselskii fixed point theorem and Schauder fixed point theorem.
作者 王莉
出处 《吉林师范大学学报(自然科学版)》 2010年第2期129-133,共5页 Journal of Jilin Normal University:Natural Science Edition
关键词 正解 边值问题 不动点 不动点定理. Positive solutions Boundary value problem Fixed point Fixed point theorem
  • 相关文献

参考文献3

  • 1R.Ma Positive Solutions of a Nonlinear Three-point Boundary Value Problem[J].Eletron J Diff Eqns 1999,(3):1-8.
  • 2D.D.Hai Positive Solutions for Sem ilinear Elliptic E-quations in Annular[J].Nonlinear Analysis 1999,(3):1051-1058.
  • 3C.P.Gupta A Sharper Condition for the Solvability of a Three-pointecond Order Boundary Value Problem[J].J Math Anal Appl,1997,(2):579-586.

同被引文献17

  • 1廖晓昕.动力系统的稳定性理论和应用[M].北京:国防工业出版社,2001.214-220.
  • 2Ma R Y. Existence of positive solutions for a nonlinear m-point boundary value problem[J]. ActaMath Sinica,2003,64:787 - 794.
  • 3Wong Fu Hsiang. Existence of positive solutions for m-Laplaeian bvps[J]. Appl Math Letters,1999,12:11 - 17.
  • 4Liu J. Periodic solutions of infinite delay evolution equations[J], J Math Anal Appl,2000,247:627 — 644.
  • 5Gaines R,Mawhin J. Coincide degree and nonlinear differential equation[M]. Berlin: Springer-Ver-lag,1997.
  • 6王莉.一类脉冲周期边值问题多个正解的存在性[J].湖南师范大学学报:自然科学版,2011,34(1):45-48.
  • 7郑祖庥.泛涵微分方程理论[M].合肥:安徽教育出版社,1994.
  • 8MA Ru-yun. Existence of positive solutions for a nonlinear m--point boundary value problem[J]. Acta Math Sini- ca, 2003, 64(2) :785-789.
  • 9LIU J H. Periodic solutions of infinite delay evolution equations[J]. Journal of Mathematical Analysis and Applica- tions, 2000, 247(2) :627-644.
  • 10郭大均.非线性泛涵分析[M].济南:山东科学技术出版社,1995.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部