期刊文献+

基于二次回归正交设计的注塑件件重预测方法研究 被引量:3

QUALITY PREDICTION METHOD OF PLASTIC PART WEIGHT USING QUADRATIC REGRESSION ORTHOGONAL DESIGN
下载PDF
导出
摘要 在深入分析注射成型工艺过程、注塑件缺陷类型及产生原因的基础上,针对注塑件成型过程中的非线性及多因素耦合作用对注塑件质量的影响,提出了一种基于二次回归正交设计的质量预测方法。并以注塑件件重为质量指标,通过对注塑件成型时的模具温度、熔体温度、注塑压力和注射速度及其耦合作用进行回归分析及方差计算,建立了注塑件件重的预测模型。预测模型计算结果显示,注塑件件重与实验测量值最大误差仅为0.05%,表明建立的预测模型能够较为准确地反映注塑工艺参数及其耦合作用与注塑件件重之间的关系。 Based on the deep analysis of injection molding process and the type and cause of plastic part defects,a quality prediction method is proposed using quadratic regression orthogonal design,according to the effect of nonlinearity and coupling effect on the part quality.Moreover,a forecasting model is set up,taking the part weight as quality index,through regression analysis and variance calculation of mold temperature,melt temperature,injection pressure,injection velocity and their coupling effects.The calculated results of forecasting model show that the maximum error of part weight and measured value is only 0.05%.This indicates the forecasting model can comprehensively reflect the influence relation of the injection molding parameters and their coupling effect on plastic part weight.
出处 《工程塑料应用》 CAS CSCD 北大核心 2010年第1期30-34,共5页 Engineering Plastics Application
关键词 注射成型 注塑件件重 回归正交设计 预测模型 injection molding plastic part weight regression orthogonal design forecasting model
  • 相关文献

参考文献6

  • 1Sadeghi B H M.A BP-neural network predictor model for plastic injection molding process[J].Journal of Materials Processing Technology,2000,103:411-416.
  • 2Chen Wenchin,Tai Peihao,Wang Minwen.A neural network-based approach for dynamic quality prediction in a plastic injection molding process[J].Expert Systems with Applications,2008,35:843-849.
  • 3张玲利,吴大鸣,张丽蕾.注塑成型过程中的多元回归分析[J].塑料,2007,36(3):76-79. 被引量:7
  • 4Zhu Jie,Chen Joseph C.Fuzzy neural network-based in-process mixed material-caused flash prediction (FNN-IPMFP) in injection molding operations[J].Int J Adv Manuf Technol,2006,29:308-316.
  • 5Yang Yi,Gao Furong.Injection molding product weight:Online prediction and control based on a nonlinear principal component regression model[J].Polymer Engineering and Science,2006,46:540-548.
  • 6谢红梅,廖小平,卢煜海.遗传神经网络及其在制品质量预测中的应用[J].中国机械工程,2008,19(22):2711-2714. 被引量:8

二级参考文献10

  • 1孙奇志,宋卫东.精密注射成型最佳工艺参数的设定[J].塑料科技,1996(6):13-16. 被引量:4
  • 2Box M J. A New Method of Constrained Optimization and a Comparison with Other Methods[J]. Computer Journal, 2002,15 (2), 85-90.
  • 3Yang Yanxi,Zheng Gang, Liu Ding. BP-- GA Mixed Algorithms for Shortterm Load for Ecasting [C]//Proceedings of 2001 International Conference on Information Technology and Information Network. Beijing, 2001:334-339.
  • 4Liao X P, Xie H M, et al. Adaptive Adjustment of Plastic Injection Processes Based on Neural Network[J]. Journal of Materials Processing Technology, 2007,187-188 : 676-679.
  • 5唐晓芬.六西格玛核心教程[M].北京:中国标准出版社,2002..
  • 6J Lahey,R Launby.Experimental Design for Injection Molding[ M ].Launsby Consulting,1998.
  • 7Chris Rauwendaal.注射和挤出成型中的统计过程控制[M].北京:化学工业出版社,2005:72-73.
  • 8张驰.六西格玛分析阶段[M].广州:广东出版社,2003.
  • 9金仁杰.神经网络动量-自适应学习率BP算法与BP算法的性能比较及其应用[J].微型电脑应用,2001,17(7):30-32. 被引量:7
  • 10王利霞,王蓓,申长雨.工艺参数对注塑制品质量的影响研究[J].郑州大学学报(工学版),2003,24(3):62-66. 被引量:27

共引文献13

同被引文献91

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部