期刊文献+

基于导向搜索算法的电力系统无功优化 被引量:1

Reactive Power Optimization Based on Oriented Search Algorithm
下载PDF
导出
摘要 采用导向搜索算法(OSA),以实现电力系统的无功优化.该算法将搜索个体模拟为人的搜索行为,搜索对象(目标函数最优解)模拟为可向搜索个体传送导向信息的智能体,以使搜索个体和搜索对象间可相互通讯.为验证该算法的有效性,以IEEE 57和IEEE 118节点测试系统为例进行了仿真,并与全面学习粒子群优化算法(CLPSO)和自适应遗传算法(AGA)的结果进行了比较.结果表明:导向搜索算法能得到高质量的全局最优解,IEEE 57和IEEE 118系统优化后的网损可分别减小13.871%和13.223%. The oriented search algorithm(OSA) was used to optimize reactive power flow in a power system.In the OSA,the search-individual simulates human behavior,and the search-object(the optimal solution of the objective function) works like an intelligent agent that can transmit oriented information to search-individuals,so that search-individuals and the search-object can communicate with each other.The OSA was tested on IEEE 57-bus and IEEE 118-bus power systems in order to verify its efficiency,and the numerical results were compared with the ones obtained by the comprehensive learning particle swarm optimizer(CLPSO) and the adaptive genetic algorithm(AGA).The research results show that compared with the CLPSO and the AGA,the OSA can find high-quality optimal solutions,and the active power losses for optimized IEEE 57-bus and IEEE 118-bus power systems are decreased by 13.871% and 13.223%,respectively.
出处 《西南交通大学学报》 EI CSCD 北大核心 2010年第3期418-423,共6页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(60870004)
关键词 导向搜索算法 无功优化 电力系统 oriented search algorithm reactive power optimization power system
  • 引文网络
  • 相关文献

参考文献21

  • 1MAMANDUR K R C, CHENOWETH R D. Optimal control of reactive power flow for improvements in voltage profiles for real power loss minimization [ J ]. IEEE Trans. on PAS, 1981, 100(7) : 3185-3193.
  • 2MOMOH J A, ADAPA R, Eo-HAWARY M E. A review of selected optimal power flow literature to 1993. Ⅰ. Nonlinear and quadratic programming approaches [J]. IEEE Trans. on Power Systems, 1999, 14 (1): 96-104.
  • 3MOMOH J A, El-HAWARY M E, ADAPA R. A review of selected optimal power flow literature to 1993.Ⅱ. Newton, linear programming and interior point method Ⅱ[ J]. IEEE Trans. on Power Systems, 1999, 14 (1). 105-111.
  • 4刘明波,杨勇.计及静态电压稳定约束的无功优化规划[J].电力系统自动化,2005,29(5):21-25. 被引量:50
  • 5王洪章,熊信艮,吴耀武.基于改进Tabu搜索算法的电力系统无功优化[J].电网技术,2002,26(1):15-18. 被引量:85
  • 6黄伟,张建华,张聪,刘自发,魏志连,潘东立.基于细菌群体趋药性算法的电力系统无功优化[J].电力系统自动化,2007,31(7):29-33. 被引量:26
  • 7戴朝华,陈维荣,朱云芳,郑永康,李奇.IIR数字滤波器设计的搜寻者优化算法[J].西南交通大学学报,2009,44(6):871-876. 被引量:12
  • 8WU Q H, CAO Y J, WEN J Y. Optimal reactive power dispatch using an adaptive genetic algorithm [ J ]. Int. J. Elect. Power Energy Syst. , 1998, 20(8) : 563-569.
  • 9YOSHIDA H, FUKUYAMA Y, KAWATA K, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment [J]. IEEE Trans. on Power Syst, 2001, 15(4) :1232- 1239.
  • 10ZHANG Wen, LIU Yutian, CLERC M. An adaptive PSO algorithm for reactive power optimization [ C ] ff Proceedings of the 6th International Conference on Advances in Power System Control, Operation and Management. Hong Kung: [s. n. ] ,2003: 302-307.

二级参考文献136

共引文献444

同被引文献12

引证文献1

二级引证文献2

相关主题

;
使用帮助 返回顶部