期刊文献+

基于模糊测度KNN的多维度数据分类算法 被引量:1

A Method for Multi-dimension Data Classification Based on Fuzzy Measure KNN
原文传递
导出
摘要 k-近邻(KNN)算法具有直观、无需先验统计知识、无监督学习等优点。多维度数据存在边界模糊性,这导致集合元素隶属关系的不确定,传统KNN算法不能有效地进行分类。本文提出利用模糊测度加强不确定性特征信息的量化,建立基于模糊测度的k近邻分类算法(FM-KNN)。先通过构建证据理论(Dempster-Shafer Theory)模糊测度函数,解决证据理论非单调性等问题;再利用证据模糊测度对多维度属性的不确定信息进行量化计算,通过支持信度确定样本分类规则。通过对比实验表明,在多维度样本数据分类方面FM-KNN算法比其他KNN分类算法有着更好的效果。 k-nearest neighbor (KNN) algorithm has many advantages such as intuitiveness, requiring no prior knowledge of statistics, unsupervised learning, etc, but it cannot deal effectively with the multi-dimension data sample which uncertainty of subordinate relationship due to the fuzziness of boundary element set. This paper presents a fuzzy measures k-Nearest Neighbor (FM-KNN), which applies fuzzy measures to strengthen the quantitative uncertainty characteristic information. The main idea is stated as follows: firstly we use fuzzy measure to solve non-monotonic of Dempster-Shafer Evidence Theory; then we quantify the uncertainty calculation about multi-dimensional attribute information by using of new Dempster-Shafer fuzzy measure function; finally we determine FM-KNN classification rules by a sample of support reliability. The results show that FM-KNN is better than other KNN in the multi-dimensional data classification.
出处 《系统工程》 CSSCI CSCD 北大核心 2010年第3期103-107,共5页 Systems Engineering
基金 国家自然科学基金资助项目(70801021) 教育部人文社会科学资助项目(08JC630019)
关键词 多维度数据 模糊测度 K近邻 证据理论 Multi-dimensions Data Fuzzy Measure k-Nearest Neighbor Dempster-Shafer Evidence Theory
  • 相关文献

参考文献17

  • 1Fukunaga K, Hostetler L. Optimization of k nearest neighbor density estimates[J]. Information Theory, 1973,19 (3), 320- 326.
  • 2陆微微,刘晶.一种提高K-近邻算法效率的新算法[J].计算机工程与应用,2008,44(4):163-165. 被引量:22
  • 3Hafer G. Perspectives on the theory and practice of belief functions[J]. International Journal of Approximate Reasoning,1990, (4) :323-362.
  • 4Denoeux T. A k-nearest neighbor classification rule based on Dempster-Shafer theory[C]. Systems,Man and Cybernetics, 1995,25 (5) : 804 - 813.
  • 5Denoeux T. A neural network classifier based on Dempster-Shafer theory[J]. IEEE Transactions on Systems, Man and Cybernetics-Part A, 2000,30 (2) :131-150.
  • 6Yazdani A, Hoffmann U. Classification of EEG signals using Dempster Shafer theory and a k-nearest neighbor classifier[J]. IEEE Transactions on Systems, Man ,and Cybernetics, 2001,31 (1) : 327- 330.
  • 7Pal N R, Ghosh S. Some classification algorithms integrating Dempster-Shafer theory of evidence with the rank nearest neighbor rules[C]//Proceedings of the 4th International IEEE EMBS Conference on Neural Engineering, 2009,31 (1) : 59-66.
  • 8王加阳,周勇.冲突证据的融合方法研究[J].计算机应用研究,2008,25(7):2046-2049. 被引量:6
  • 9张德利,郭彩梅,吴从炘.模糊积分论进展[J].模糊系统与数学,2003,17(4):1-10. 被引量:17
  • 10Laskey K B, Levitt T S. Artificial intelligence: uncertainty [ C]//International Encyclopedia of the Social & Behavioral Sciences,2001:799-805.

二级参考文献28

  • 1张德利,郭彩梅,王中海.Fuzzy测度序列的收敛性和积分序列的收敛定理[J].东北师大学报(自然科学版),1993,25(4):11-14. 被引量:1
  • 2郭彩梅,张德利.Fuzzy数Fuzzy测度与Fuzzy积分[J].工程数学学报,1998,15(1):17-24. 被引量:6
  • 3张德利,王子孝.Fuzzy数测度与积分[J].模糊系统与数学,1993,7(1):71-80. 被引量:4
  • 4王加阳,罗安,蒋外文,丁宁.模型集成误差与优化研究[J].运筹学学报,2006,10(4):89-98. 被引量:1
  • 5Aha D W,Kibler D,Albert M K.lnstanee-based learning algorithms[J].Maehine Learning, 1991,6 : 37-66.
  • 6Aha D W.Lazy learning[M].Dordrecht:Kluwer Academic, 1997.
  • 7Kumar Han K.Text categorization using weight adjusted k-nearest neighbour classification[R].Dept of CS,University of Minnesota, 1999.
  • 8Wilson D R, Martinez T R.lmproved heterogeneous distance functions[J].Artificial Intelligence Research, 1997,6: 1-34.
  • 9Xie Z, Hsu W,Liu Z,et al.SNNB:a selective neighborhood based naive bayes for lazy learning[C].Proceedings of the Sixth Pacific-Asia Conference on KDD, 2002 : 104-114.
  • 10Jiang L,Zhang H,Cai Z.Dynamie K-Nearest-Neighbor naive bayes with attribute weighted[C].LNAI 4223:Proceedings of the 3rd In-ternational Conference on Fuzzy Systems and Knowledge Discovery,FSKD 2006.[S.l.]:Springer Press,2006:365-368.

共引文献42

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部