期刊文献+

钻井用柴油发动机特征挖掘及故障诊断 被引量:2

Characteristic mining and failure diagnosis of the drilling diesel engine
下载PDF
导出
摘要 柴油发动机状态监测及故障诊断的关键环节是特征参数的挖掘。提出了一种将距离测度和奇异值分解相结合的特征挖掘方法,将该方法应用到发动机的特征挖掘中,并将挖掘到的特征作为BP神经网络的输入向量用于发动机的故障诊断。结果表明,根据类间距离和类内距离之比定义的特征敏感度可以很好地区分不同的类,基于距离测度和奇异值相结合的方法可以优化特征,提高诊断的准确率。利用训练好的BP神经网络对现场12台发动机进行故障诊断,有11台诊断结论完全正确,诊断的准确率为91.67%。 The key step of diesel engine state monitoring and failure diagnosis is the mining of characteristic parameters.A kind of characteristic mining method which combines distance measurement and singular value decomposition was put forward.The method was applied to the mining of engine characteristics which were in turn used as the input vector of the BP neural network to diagnose the failure of engine.The result shows that different classes can well be distinguished according to the characteristic sensitivity of the definition of the ratio between inter-class distance and intra-class distance.The method based on the combination of distance measurement and singular value can optimize the characteristics and improve the accuracy of diagnosis.The well-trained BP neural network was adopted to conduct a field failure diagnosis of 12 engines and the diagnosis conclusion of the 11 engines was completely correct.The accuracy rate of diagnosis was 91.67%.
作者 段礼祥 马斌
出处 《石油机械》 北大核心 2010年第6期46-48,104,共3页 China Petroleum Machinery
基金 教育部新世纪优秀人才支持计划项目"机械系统过程信息融合诊断方法研究"(NCET.05.0110)
关键词 柴油发动机 特征挖掘 故障诊断 BP神经网络 diesel engine,characteristic mining,failure diagnosis,BP neural network
  • 相关文献

参考文献5

二级参考文献22

  • 1刘靖,陈福生,张勤.基于粗糙集和模糊集的属性约简算法[J].计算机工程与科学,2005,27(2):42-44. 被引量:4
  • 2杨关良,李忠杰,徐小杰.基于颜色-空间的图像检索算法[J].工程图学学报,2005,26(3):50-53. 被引量:11
  • 3王广,李军.基于粗糙集理论的航空发动机故障诊断[J].航空发动机,2005,31(4):51-53. 被引量:10
  • 4王少彬,郝红卫.利用综合特征的图像检索及特征互补性研究[J].微计算机信息,2006(08S):177-179. 被引量:9
  • 5MallatS 杨力华 戴道清 黄文良 等译.信号处理的小波导引[M].北京:机械工业出版社,2002..
  • 6HaganMT DemuthHB BealeMH 戴葵(译).神经网络设计[M].北京:机械工业出版社,2002.119-166.
  • 7Guo H,Jack L B,Nandi A K.Feature generation using genetic programming with application to fault classification[J].IEEE Transaction on System Man and Cybernetics,2005,35(1):89-99.
  • 8Samanta B.Artificial neural networks and genetic algorithms for gear fault detection[J].Mechanical Systems and Signal Processing,2004,18(5):1273-1282.
  • 9Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc R Soc Lond (A),1998,454(1):903-995.
  • 10Ham F M,Kostanic I.Principles of neurocomputing for science & engineering[M].New York:McGraw Hill,2001.96-164.

共引文献49

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部