摘要
对数三角函数可以在长度为π的区间上展开为傅里叶级数.通过交换积分和求和的次序,对数三角函数的定积分就转化为无穷求和形式,后者可以通过基本的求和方法求出.
A logarithm of trigonometric function can be expanded as Fourier series on an interval of length π. Exchanging the order of integnation and summation, one can transform the definite integral of this logarithm into an infinite series, which can be evaluated by elementary methods.
出处
《高等数学研究》
2010年第3期31-32,共2页
Studies in College Mathematics
基金
浙江省省级精品课程基金资助
关键词
定积分
傅里叶级数
对数三角函数
Definite integral
Fourier series
logarithm trigonometric function.