期刊文献+

基于小波包-神经网络的泵机组故障诊断 被引量:2

下载PDF
导出
摘要 泵机组是部队油库的主要工作设备,长期工作容易发生机械故障,对其进行故障诊断非常必要。本文通过采集泵机组工作时的振动信号,对采集到的信号进行小波包分解提取特征向量,利用三层BP神经网络对特征向量分类训练和模式识别的方法,提高了泵机组故障诊断的速度和精度。实验的结果表明,小波包分解与BP神经网络相结合的方法,故障识别精度高、速度快,可以满足油泵故障诊断的要求。
出处 《内蒙古石油化工》 CAS 2010年第9期32-34,共3页 Inner Mongolia Petrochemical Industry
  • 相关文献

参考文献4

二级参考文献5

  • 1Ling Jing,Qu Liangsheng.Feature Extraction Bas-ed on Morlet Wavelet and Its Application for Mechanical Fault Diagnosis. Journal of Sound and Vibration, 2000,234(1):135-148
  • 2Peter W T, Peng Y H, Richard Y. Wavelet Analysis and Envelope Detection for Rolling Element Bearing Fault Diagnosis-Their Effectives and Flexibilities. Journal of Vibration and Acoustics, 2000, 123(3): 303-310
  • 3Huang N E, Shen Z, Long S R. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A, 1998, 454(12): 903-995
  • 4张来斌,刘守道,王朝晖.基于神经网络的柴油机燃烧系统故障诊断[J].内燃机学报,2000,18(4):370-374. 被引量:8
  • 5钟佑明,秦树人,汤宝平.一种振动信号新变换法的研究[J].振动工程学报,2002,15(2):233-238. 被引量:128

共引文献520

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部