摘要
经典Dirac算子在微扰因子μ的扰动下,如果特征值能展为微扰参数的幂级数λn(μ)=λn(0)+μλn1+μ2λn2+…,利用Green函数的微扰展开式和一个积分恒等式,可得到迹恒等式的正则部分就是此展式的前3项,即∑∞(λn(μ)-λn(0)-μλn1-μ2λn2)=0,并且对特征值的正整幂λnσ也有类似现象.
Under the disturbance of μ,if the classical Dirac operator can develop power series:λn(μ)=λn(0)+μλn1+μ2λn2+…,the trace's regular parts that are just this expansion's prefix three part will be obtained,that is ∑∞n=-∞(λn(μ)-λn(0)-μλn1-μ2λn2)=0,using Green function's infinitesimal distrubance expansion and one integral identity.And there is a similar result of λσn.
出处
《华北水利水电学院学报》
2010年第2期107-110,共4页
North China Institute of Water Conservancy and Hydroelectric Power
基金
河南工程学院青年科研基金项目(Y09049)