期刊文献+

Heisenberg群上的尺度函数扩张

Convergence Properties of Scaling Function Expansions on the Heisenberg Group
下载PDF
导出
摘要 首先研究Heisenberg群Hd上的多尺度分析,其次得到了以特征函数为尺度函数的多尺度扩张在Lp意义下的收敛性. We first investigate the multiresolution analysis on the Heisenberg H^d. In addition, we study the convergence properties of the characteristic function expansions on the L^p(H^d).
作者 肖劲森
机构地区 广州大学
出处 《广东技术师范学院学报》 2010年第3期13-16,共4页 Journal of Guangdong Polytechnic Normal University
关键词 多尺度分析 尺度函数 Lp收敛 HEISENBERG群 multiresolution analysis scaling function Le convergence Heisenberg group
  • 相关文献

参考文献2

二级参考文献16

  • 1LIUHeping LIUYu PENGLizhong CHUXiaoyong.Cascade algorithm and multiresolution analysis on the Heisenberg group[J].Progress in Natural Science:Materials International,2005,15(7):602-608. 被引量:3
  • 2刘明菊,陆善镇.A WEIGHTED ESTIMATE OF THE HORMANDER MULTIPLIER ON THE HEISENBERG GROUP[J].Acta Mathematica Scientia,2006,26(1):134-144. 被引量:1
  • 3Cheng, M. D., Deng, D. G., Long, R. L,: Real Analysis (in Chinese), Higher Education Press, Beijing, 1993.
  • 4Stein, E. M.: Topics in harmonic analysis related to Littlewood Paley theory, Ann. Math. Study, 63,Princeton Univ. Press, Princeton, 1971.
  • 5Folland, G. B., Stein, E. M.: Hardy Spaces on homogeneous Groups, Princeton Univ, Press, Princeton,1982.
  • 6Edwards, R. E., Gaudry, G. I.: Littlewood-Paley and Multiplier Theory, Springer-Verlag, Berlin - Heidelberg- New York, 1977.
  • 7Strichartz, R. S.: Multipliers for spherical harmonic expansions. Trans. Amer. Math. Soc,, 167, 115-124(1972).
  • 8Thangavelu, S.: Multipliers for Hermite expansions. Revist. Math. Ibero., 3, 1-24 (1987).
  • 9Thangavelu, S.: Littlewood-Paley-Stein theory on Cn and Weyl multipliers. Revist. Math. Ibero., 6,147-156 (1990).
  • 10Thangavelu, S.: Harmonic Analysis on the Heisenberg group, Birkhauser, Boston-Basel-Berlin, 1998.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部