期刊文献+

半交换的π-正则环

Semicommutative π-Regular Rings
下载PDF
导出
摘要 研究了半交换的π-正则环的扩张.利用环的结构理论,证明了若R是半交换的,I是R的一个理想,则R是π-正则环当且仅当I和R/I都是π-正则环.从而,把Badawi关于有1的半交换的π-正则环的结果推广到了一种更广泛的"半交换环"—半交换的π-正则环(不必含1).半交换的π-正则环类和Abelπ-正则环类也无包含关系. Extensions of semicommutative w-regular rings are studied using ring structure theory, it is proven that when R is a semicommutative ring, R is a π-regular ring only if I and R/I are π-regular tings for an ideal I of R. Therefore, semicommutative π-regular tings are devoted to generalize results of Badawi on the semicom- mutative w-regular rings with one, and a semicommutative π-ring.
作者 温立书 曲坤
出处 《大连交通大学学报》 CAS 2010年第3期107-108,共2页 Journal of Dalian Jiaotong University
基金 辽宁省"十一五"教育科学规划资助项目
关键词 半交换环 Π-正则环 Abelπ-正则环 duo环 semicommutative rings π-regular rings Abel π-regular rings duo rings
  • 相关文献

参考文献9

  • 1GOODEARL K R.Yon Neumann Regular Rings[M].Landon.San Francisco-Melbourne:Pitman.1979.
  • 2AZUMAYA G.Strongly π-regular rings[J].J.Fac.Sci.,1954,13:34-39.
  • 3BADAWI A.On semicommutative π-regular rings[J].Comm.Algebra,1994,22(1):151-157.
  • 4BADAWI A.On Abelian π-regular rings[J].Comm.AI-gebra,1997,25(4):1009-1021.
  • 5HIRANO Y.On annihilator ideals of a polynomial ring over a noncommutative ring[J].J.Pure Appi.Alg.,2002,168:45-52.
  • 6LAM T Y.A First Course in Noncommutative Rings[M].GTM 131.New York-Heidelberg-Bedin:Spinger-Veflag,1991.
  • 7HIRANO Y.On annihilator ideals of a polynomial ring O-vet a noncommutative ring[J].J.Pure Appl.Alg.,2002,168:45-52.
  • 8HAGHANY A,VARADARAJAN K.Study of formal trian-gular matrix rings[J].Comm.Algebra,1999,27:5507-5526.
  • 9温立书,杜现昆.Abel π-正则环的扩张[J].数学杂志,2007,27(6):717-719. 被引量:2

二级参考文献5

  • 1Azumaya G.. Strongly π-regular Rings[J]. J. Fac. Sci. Hokkaido Univ. , 1954,13:34-39.
  • 2Dischinger M. F.. Sur les Anneux Fortement π-reguliers[J]. C. R. Acad. Sci. Paris, 1976,283 (8): 571-573.
  • 3Cedo F. ,Rowen L. H.. Addendum to “Examples of Semiperfect Rings”[J]. Israel J. Math. , 1998, 107:343-348.
  • 4Badawi A.. On Abelian π-regular Rings[J]. Comm. Algebra, 1997,25(4): 1009-1021.
  • 5Fuchs L. ,Rangaswamy K. M.. On Generalized Regular Rings[J]. Math. Z. , 1968,107(1):71-81.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部