期刊文献+

基于改进GAC模型的二值水平集前列腺超声图像自动分割算法 被引量:1

Automatic segmentation of prostate ultrasound images using binary level set based on an approved GAC model
下载PDF
导出
摘要 提出了一种基于改进测地线主动轮廓(geodesic active contour,GAC)的自动分割算法.首先通过结合径向浅浮槽和区域填充算法得到滤波后图像的大致轮廓,然后通过构造基于区域信息的符号压力函数代替边界停止函数,并且加入了基于边界梯度信息的能量项,有效地克服了弱边界的问题.该模型用二值水平集方法实现,使算法的稳定性更高,计算量大大降低.对前列腺直肠超声图像的实验结果表明:本算法迭代收敛速度快,有效避免了边界泄露问题. An automatic segmentation algorithm of prostate ultrasound image was proposed using an approved GAC model. First, a coarse contour was obtained by radial bas-relief and region fill algorithm to the filtered image. The problem of weak edges was efficiently solved by presenting a new region-based signed pressure forces function to replace the edge stopping function and incorporating an energy function based on boundary gradient information. The model was implemented by binary level set function, which reduces the expensive computational cost of re-initialization of the conventional level set. Experimental results with several prostate transrectal ultrasound images show that the proposed algorithm has a fast convergence speed compared with conventional GAC models and can avoid the problem of edge leaking effectively.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2010年第5期441-445,共5页 JUSTC
基金 安徽省教育厅自然科学基金重点项目(2006KJ097A)资助
关键词 sticks滤波 径向浅浮槽 自动分割 二值水平集 重新初始化 sticks filter radial bas-relief automatic segmentation binary level set re-initialization
  • 相关文献

参考文献16

  • 1Sahba F,Tizboosh H R,Salama M M A.Segmentation of prostate boundaries using regional contrast enhancement[C] //Proceedings of the IEEE International Conference on Image Prooessing.INSPEC,2005,2:1 266-1 269.
  • 2Zhang Y,Qian W,Sankar R.Prostate boundary detection in transrectal ultrasound images[C] //Proceedings of the IEE International Conference on Acoustics,Speech,and Signal Processing.INSPEC,2005,5:617-620.
  • 3Nezamoddin N Kachouie,Paul Fieguth,A medical texture local binary pattern for TRUS prostate segmentation[C] //Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Lyon,France:IEEE Press,2007,1:5 605-5 608.
  • 4Hu N,Downey D B,Fenster A,et al.Prostate boundary segmentation from 3D ultrasound images[J].Medical Physics,2003,30(7):1 648-1 659.
  • 5Hodge A C,Fenster A,Downey D B,et al.Prostate boundary segmentation from ultrasound images using 2D active shape models:optimization and extension to 3D[J].Computer Methods and Programs in Biomedicine,2006,84(2-3):99-113.
  • 6Chan T F,Vese L A.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 7Rahnamayan S,Tizhoosh H R,Salamam M M A,et al.Automated snake initialization for the segmentation of the prostate in ultrasound images[C] //Proceedings of the International Conference on Image Analysis and Recognization.2005,3656:930-937.
  • 8Stefan D.Prostate ultrasound image processing[J].ACM Crossroads,2007,13(3):8.
  • 9Liu Y J,Ng W S,Teo M Y,et al.Computerized prostate boundary estimation of ultrasound images using radial basrelief method[J].Medical and Biological Engineering and Computing,1997,35(5):445-454.
  • 10Kwoh K,Teo M Y,Tan S N,et al.Outlining the prostate boundary using the harmonics method[J].Medical and Biological Engineering and Computing,1998,36(6):768-771.

同被引文献8

  • 1Caselles V, Kimmel R, Sapiro G.Geodesic active contours[J].Intemational Journal of Computer Vision, 1997,22(1) :61-79.
  • 2Zhang Bo, Su Yongli, Xu Yongfeng, et al.An adaptive geodesic active contour model[C]//2010 Sixth International Conference on Natural Computation(ICNC),2010:2267-2270.
  • 3Chan T, Vese L.Active contours without edges[J].IEEE Transactions on Image Processing,200l, 10(2):266-277.
  • 4Li C,Kao C,Gore J C,et al.lmplicit active contours driven by local binary fitting energy[C]//CVPR 2007,2007.
  • 5Xu Chcnyang, Yezzi A.On the relationship between parametrie and geometric active contours[C]//Proe of 34th Asilomar Con- ference on Signals, Systems and Computers,2000:483-489.
  • 6Zhang K H,Song H H,Zhang Let.Active contours driven by local image fitting energy[J].Pattern Recognition, 2010, 43 (4) : 1199-1206.
  • 7唐利明.基于GAC模型的自适应图像分割算法[J].小型微型计算机系统,2010,31(6):1223-1225. 被引量:7
  • 8李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报,2002,25(11):1175-1183. 被引量:125

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部