期刊文献+

Linearly McCoy Rings and Their Generalizations 被引量:1

Linearly McCoy Rings and Their Generalizations
下载PDF
导出
摘要 A ring R is called linearly McCoy if whenever linear polynomials f(x), g(x) e R[x]/{0) satisfy f(x)g(x) : O, then there exist nonzero elements r, s ∈ R such that f(x)r : sg(x) =0. For a ring endomorphism α, we introduced the notion of α-skew linearly McCoy rings by considering the polynomials in the skew polynomial ring R[x; α] in place of the ring R[x]. A number of properties of this generalization are established and extension properties of α-skew linearly McCoy rings are given. A ring R is called linearly McCoy if whenever linear polynomials f(x), g(x) e R[x]/{0) satisfy f(x)g(x) : O, then there exist nonzero elements r, s ∈ R such that f(x)r : sg(x) =0. For a ring endomorphism α, we introduced the notion of α-skew linearly McCoy rings by considering the polynomials in the skew polynomial ring R[x; α] in place of the ring R[x]. A number of properties of this generalization are established and extension properties of α-skew linearly McCoy rings are given.
出处 《Communications in Mathematical Research》 CSCD 2010年第2期159-175,共17页 数学研究通讯(英文版)
基金 The NSF (10871042,10971024) of China the Specialized Research Fund (200802860024) for the Doctoral Program of Higher Education
关键词 linearly McCoy ring a-skew linearly McCoy ring polynomial ring matrix ring linearly McCoy ring, a-skew linearly McCoy ring, polynomial ring,matrix ring
  • 相关文献

参考文献10

  • 1McCoy, N. H., Remarks on divisors of zero, Amer. Math. Monthly, 49(1942), 286-295.
  • 2Rege, M. B. and Chhawchharia, S., Armendariz rings, Proc. Japan Acad. Ser. A, Math. Sci., 73(1997), 14-17.
  • 3Nielsen, P. P., Semi-commutativity and the McCoy condition, J. Algebra, 298(2006), 134-141.
  • 4Camillo, V. and Nielsen, P. P., McCoy rings and zero-divisors, J. Pure Appl. Algebra, 212(2008), 599-615.
  • 5Hong, C. Y., Kim, N. K. and Kwak, T. K., On skew Armendariz rings, Comm. Algebra, 31(2003), 103-122.
  • 6Lei, Z., Researches on McCoy rings, Master's thesis, Southeast University, Nanjing, 2008.
  • 7Ying, Z. L., Chen, J. L. and Lei, Z., Extensions of McCoy rings, Northeast. Math. J., 24(2008), 85-94.
  • 8Huh, C., Lee, Y. and Smoktunowicz, A., Armendariz rings and semicommutative rings, Comm. Algebra, 30(2002), 751-761.
  • 9Kim, N. K. and Lee, Y., Armendariz rings and reduced rings, J. Algebra, 223(2000), 477-488.
  • 10Cui, J., Researches on linearly McCoy rings, Master's thesis, Southeast University, Nanjing, 2009.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部