期刊文献+

On the Asymmetry for Convex Domains of Constant Width 被引量:4

On the Asymmetry for Convex Domains of Constant Width
下载PDF
导出
摘要 The extremal convex bodies of constant width for the Minkowski measure of asymmetry are discussed. A result, similar to that of H. Groemer's and of H. Lu's, is obtained, which states that, for the Minkowski measure of asymmetry, the most asymmetric convex domains of constant width in R2 are Reuleaux triangles. The extremal convex bodies of constant width for the Minkowski measure of asymmetry are discussed. A result, similar to that of H. Groemer's and of H. Lu's, is obtained, which states that, for the Minkowski measure of asymmetry, the most asymmetric convex domains of constant width in R2 are Reuleaux triangles.
出处 《Communications in Mathematical Research》 CSCD 2010年第2期176-182,共7页 数学研究通讯(英文版)
基金 The NSF (08KJD110016) of Jiangsu Hight Education
关键词 asymmetry measure reuleaux polygon constant width asymmetry measure, reuleaux polygon, constant width
  • 相关文献

参考文献6

  • 1Grunbaum, B., Measure of convex sets, convexity, in: Proceedings of Symposia in Pure Mathematics 7, Amer. Math. Soc., Providence, 1963, pp.233-270.
  • 2Besicovitch, A. S., Measures of asymmetry for convex curves, II. Curves of constant width, J. London Math. Soc., 26(1951), 81-93.
  • 3Groemer, H. and Wallen, L. J., A measure of asymmetry for domains of constant width, Beitrage Algebra Geom., 42(2001), 517-521.
  • 4Lu, H. and Pan, S. L., A measure of asymmetry for convex domains of constant width, Department of Mathmatics, Eastern China Normal University, preprint, 2005-001; http://www.math.ecnu.edu.cn/preprint/2005-001.ps.
  • 5Klee, Jr. V. L., The critical set of a convex set, Amer. J. Math., 75(1953), 178-188.
  • 6Chakerian, G. D., Sets of constant width, Pacific J. Math., 19(1)(1966), 13-21.

同被引文献2

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部