期刊文献+

基于对等差异进化算法的医学图像配准方法 被引量:1

Opposition-Based Differential Evolution for Medical Image Registration
下载PDF
导出
摘要 差异进化算法是一种简单、可靠和有效的全局优化算法。本文在差异进化算法的基础上,将对等学习方法应用到种群初始化和进化中,提出一种基于对等差异进化算法的图像配准方法。该方法在种群进化过程中由对等跃变率决定是否生成对等种群,文中对不同对等跃变率及动态对等跃变率的不同情况进行三维医学图像配准实验。实验结果表明,只要选取合适的对等跃变率,该方法比传统差异进化算法的图像配准具有更高的精度和更好的稳定性;并且线性递减跃变率的对等差异进化配准算法比固定对等跃变率和线性递增跃变率的配准更精确、更稳定。 The differential evolution is a simple,reliable and efficient global optimization algorithm.This paper proposes an opposition-based differential evolution for the image registration.The opposition-based learning is used for the population initialization and the generation evolution based on the differential evolution.Different constant and time varying jumping rates,for determining whether generate corresponding opposition population or not,are tried on 3D medical image registration.Experimental results show that the algorithm for choosing a proper jumping rate outperforms the conventional differential evolution on the precision and the stability for medical image registration;and the linearly decreasing jumping rate performs better than constant settings and linearly increasing policy.
出处 《数据采集与处理》 CSCD 北大核心 2010年第3期358-363,共6页 Journal of Data Acquisition and Processing
关键词 差异进化 对等学习法 图像配准 differential evolution opposition-based learning image registration
  • 相关文献

参考文献14

  • 1Storn R,Price K.Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[R].TR-95-012,International Computer Science Institute:Berkeley,CA,USA,1995:1-12.
  • 2曹国刚,荣成城,罗立民.基于差异进化算法的医学图像配准方法[J].应用科学学报,2008,26(3):274-280. 被引量:2
  • 3De Falco I,Maisto D,Scafuri U,et al.Distributed differential evolution for the registration of remotely sensed images[C] //Proceedings of the 15th Euromicro International Conference on Parallel,Distributed and Network-Based Processing.Washington,DC,USA:IEEE Computer Society,2007:358-362.
  • 4Telenczuk B,Ledesma-Carbato M J,Velazquez-Muriel J A,et al.Molecular image registration using mutual information and differential evolution optimization[C] //Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging:Nano to Macro.Arlington,VA,USA:IEEE Computer Society,2006:844-847.
  • 5He R,Narayana P A.Improvement to global optimization of mutual information on retrospective registration of magnetic resonance images[C] //Proceedings of the Second Joint EMBS/BMES Conference.Houston,TX,USA:IEEE Computer Society,2002:1009-1010.
  • 6Salomon M,Perrin G R,Heitz F.Differential Evolution for Medical Image Registration[C] //Proceedings of the International Conference on Artificial Intelligence.Las Vegas,USA:CSREA Press,2001:201-207.
  • 7Brest J,Boskovic B,Greiner S,et al.Performance comparison of self-adaptive and adaptive differential evolution algorithms[J].Soft Computing,2007,11(7):617-629.
  • 8Rahnamayan S,Tizhoosh H R,Salama M M A.Opposition-based differential evolution (ODE) with variable jumping rate[C] //Proceedings of the 2007 IEEE Symposium on Foundations of Computational Intelligence (FOCI).Hawaii,USA:IEEE Communications Society,2007:81-88.
  • 9Tizhoosh H R.Opposition-based learning:A new scheme for machine intelligence[C] //Proceedings of the International Conference on Computational Intelligence for Modeling Control and Automation.Vienna,Austria:IEEE Communications Society,2005,I:695-701.
  • 10Rahnamayan S,Tizhoosh H R,Salama M M A.Opposition-based differential evolution algorithms[C] //Proceedings of 2006 IEEE World Congress on Computational Intelligence.Vancouver,BC:IEEE Press,2006:7363-7370.

二级参考文献18

  • 1WOODS R, M AZZIOTTA J, CHERRY S. MRI-PET registration with automated algorithm[ J]. Computer Assist Tomography, 1993, 17:536-546.
  • 2COLLIGNON A, MAES F, DELAERE D, VANDERMEULEN D, SUETENS D, MARCHAL D. Automated multi-modality image registration based on information theory [ C ]//Information Processing in Medical Imaging (1995). Dordrecht: Kluwer Academic Publishers, 1995:263 - 274.
  • 3VIOLA P, WELLS W M. Alignment by maximization of mutual information [ J ]. International Journal of Computer Vision, 1997, 24(2): 137-154.
  • 4STUDHOLME C, DEREK L, DAVID J. Automated threedimensional registration of magnetic resonance and position emission tomograph brain images by multiresolution optimization of voxel similarity measures [ J ]. Medical Physics, 1997, 24( 1 ) :25 -35.
  • 5MAES F, COLLIGNON A, VANDERMEULEN D, MARCHAL G, SUETENS P. Multimodality image registration by maximization of mutual information [ J ]. IEEE Transactions on Medical Imaging, 1997, 16(2): 187- 198.
  • 6PLUIM J P W, MAINTZ J B A, VIERGEVER M A. Mutual information based registration of medical images: a survey [J]. IEEE Transactions on Medical Imaging, 2003, 22 (8) : 986 - 1004.
  • 7PLUIM J P W, MAINTZ J B A, VIERGEVER M A. Interpolation artefacts in mutual information-based image registration [ J ]. Computer Vision and Image Understanding, 2000, 77 (9) : 211 - 232.
  • 8STORN R, PRICE K. Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces, TR - 95 - 012 [ R ]. ICSI, 1995 : 1 - 12.
  • 9FEOKTISTOV V. Differential evolution-in search of solutions [ M ]. London : Springer-Verlag, 2006:133 - 143.
  • 10PRICE K V, STORN R, LAMPINEN J. Differential evolution: a practical approach to global optimization [ M ]. London: Springer-Verlag, 2005 : 128 - 130.

共引文献1

同被引文献3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部