期刊文献+

人工神经网络在并行计算机集群上的设计研究 被引量:4

ON DESIGNING ARTIFICIAL NEURAL NETWORKS ON PARALLEL COMPUTER CLUSTER
下载PDF
导出
摘要 人工神经网络在集群上的并行化设计和实现能够充分发挥ANN并行处理的特点,缩短训练时间,降低算法复杂度。随着并行技术的日益成熟,在并行集群上以软硬件相结合的方式设计神经网络的重要性也不断提高。从软硬件平台的多方面讨论了并行集群技术对人工神经网络设计的支持,提出了一种SOM神经网络在并行集群上的设计方法和基础框架,并就并行集群上神经网络训练效率的问题进行了深入讨论。该方案可广泛应用于多种神经网络模型的并行计算机实现。 Parallel design and implementation of artificial neural networks on clusters can give full play to the characteristics of ANN in parallel processing,shorten the training time and reduce the algorithm complexity.With parallel technology having become more matured,the neural networks' design process of hardware and software combination is getting more importance in these days.The support of parallel cluster technique on artificial neural network designing is discussed in terms of various aspects of both hardware and software platform.A new design method and framework of SOM neural network on parallel cluster is presented,and the efficiency of neural network training on parallel cluster is discussed in-depth.The artificial neural network parallel design can be widely used in a variety of neural network model on parallel computer.
出处 《计算机应用与软件》 CSCD 2010年第5期12-14,29,共4页 Computer Applications and Software
基金 国家自然科学基金项目(60473125)
关键词 SOM 并行 INFINIBAND 集群系统 Self-organising map(SOM) Parallel Infiniband Cluster
  • 相关文献

参考文献5

  • 1Culler D E,Singh J P,Gupta A.Parallel Computer Architecture[M].San Francisco:Morgan Kaufmann,1998.
  • 2Seiffert U.Multiple-layer perceptron training using genetic algorithms[C] //proceedings of ESANN '01,D-Facto,Evere,2001.
  • 3Allinson N.Advances in Self-Organising Maps[M] // USeiffert,B Michaelis.Multi-dimensional self-organizing maps on massively parallel hardware.Springer,London,2001:160-166.
  • 4Wilkinson B,Allen M.Paralled Programming[M].北京:高等教育出版社,2002.
  • 5Kumar V,Grama A,Gupta A,et al.Introduction to Parallel Computing[M].San Francisco:Benjamin Cummings/Addison Wesley,2002.

同被引文献52

  • 1宗翔,王彬.国家级气象高性能计算机管理与应用网络平台设计[J].应用气象学报,2006,17(5):629-634. 被引量:21
  • 2朱丽莉,杨志鹏,袁华.粒子群优化算法分析及研究进展[J].计算机工程与应用,2007,43(5):24-27. 被引量:57
  • 3Dean J, Ghenlawal S. MapReduce: simplified data processing on large clusters[ J]. Communications of the ACM ,2008,51 ( 1 ) : 107 - 113.
  • 4Ghenlawal S, Howard G, Leung Hun-lak S. The Google File Systerm [ C ]//Proceedings of the 19th ACM Symposium On Operating Systems Principles, 2003:20 - 43.
  • 5Poli R,Kennedy J,Blackwell T.Particle swarm optimization:An overview[J].Swarm Intelligence,2007,1(1):33-57.
  • 6Ganeshamoorthy K,Ranasinghe D N.On the performance of parallel neural network implementations on distributed memory architectures[C]//8th IEEE International Symposium on Cluster Computing and the Grid,2008:90-97.
  • 7Singhal G,Jain A,Patnaik A.Parallelization of particle swarm optimization using message passing interfaces(MPIs)[C]//IEEE World Congress on Nature&Biologically Inspired Computing,2009:67-71.
  • 8Deep K,Sharma S,Pant M.Modified parallel particle swarm optimization for global optimization using message passing interface[C]//IEEE Fifth International Conference on Bio-Inspired Computing:Theories and Applications,2010:1451-1458.
  • 9Wang D Z, Wu C H. Parallel multi-population particle swarm optimization algorithm for the uncapacitated facility location problem using OpenMP [C] //IEEE Congress on Evolutionary Computation, 2008: 1214-1218.
  • 10Maeda Y,Matsushita N.Simultaneous perturbation particle swarm optimization using FPGA[C]//IEEE International Joint Conference on Neural Networks,2007:2695-2700.

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部