期刊文献+

RoboCupSoccer中多机器人协作截球策略 被引量:2

Collaboration interception strategy of multi robots in RoboCupSoccer
下载PDF
导出
摘要 截球策略是决定机器人足球队比赛能力的重要因素。由于信息噪音、命令执行误差、多异构类型和随机异构参数等因素的影响,单纯基于个体技术的截球决策并不一定可靠。首先采用数学解析方法建立截球个体技术模型,利用牛顿迭代法求解最快截球周期、截球点和基本命令队列;然后基于BP神经网络描述两个截球周期相比的截球成功概率;最后机器人基于自己和同伴的角色关系、截球成功概率和截球点所在球场区域进行协作截球决策。实验结果显示基于角色的协作截球效果明显改善。基于此策略的机器人足球队在比赛中取得不错的成绩。 Interception strategy is an important factor for the competitive ability of robot soccer team.Due to the effect of the information noise,command implementation error,multi-heterogeneous types and random heterogeneous parameters,the interception strategy simply based on individual skill is not necessarily reliable.Firstly,mathematical analysis method is adopted to establish the interception individual skill model,and Newton iteration method is used to get the fastest interception cycle,interception point and the basic command queue.Then BP neural network is adopted to describe the interception success probability comparing two interception cycles.Finally the robot makes the interception decision collaboratively considering the allocation of roles,the interception success probability and the playfield interception point locates.The experiment results show the improvement of the rolebased collaboration interception.The robot soccer team with such strategy gets good results in the competitions.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第16期1-5,62,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.60704042) 航空科学基金(No.20080768004) 厦门大学985二期信息创新平台项目~~
关键词 RoboCupSoccer 截球模型 BP神经网络 角色 RoboCupSoccer interception model BP neural network role
  • 相关文献

参考文献12

二级参考文献37

  • 1程显毅,黄胜.基于工作流管理的MAS协调模型的研究[J].江苏大学学报(自然科学版),2004,25(4):353-355. 被引量:4
  • 2魏宏业,王建华,何崴.销售量预测的支持向量机建模及参数选择研究[J].系统仿真学报,2005,17(1):33-36. 被引量:16
  • 3刘亮,李龙澍.基于神经网络的RoboCup进攻策略[J].计算机工程与应用,2005,41(36):44-47. 被引量:4
  • 4汤哲 孙增圻.机器人足球中的协作[A]..第四届全球智能与自动化大会论文集[C].上海,2002,6.469~473.
  • 5D Cannel Markovitch S. Learning models of intelligent agents [A].Proceedings of the Thirteenth National Conference on Artificial Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conference[C].1996, Vol. 2: 62-67. http://citeseer.ni.nec.com/carme1961earning.html
  • 6Howard R A Matheson J E. Influence diagrams[J]. Howard R.A.Matheson J.E.(Eds.). Readings on the principles and applications ofdecision analysis, Strategic Decisions Group, Menlo Park, CA, 1984,11(2): 719-762.
  • 7Noh S Gmytrasiewicz P J. Agent modeling in antiair defense[A].Proceedings of the Sixth International Conference on User Modeling[C]. 1997.389-400.
  • 8J Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference[M]. Morgan Kaufmann, San Mateo, California CA, 1988.
  • 9Gerhard W. Multi-agent system S:A modem Approach to Distributed Artificial Intelligence[M]. Boston, MIT press, 1999.
  • 10D.Suryadi Piotr J.Gmytrasiewicz. Learning Models of Other Agents Using Influence Diagrams[EB/OL]. http://citeseer.nj.nec.com/suryadi991earning.html, 1999.

共引文献11

同被引文献14

  • 1徐怡,李龙澍,李学俊.改进的决策树生成算法及其在RoboCop中的应用[J].计算机工程与应用,2007,43(2):57-59. 被引量:3
  • 2张长彬,刘祚时.机器人足球RoboCup仿真系统的研究[J].江西理工大学学报,2007,28(4):75-78. 被引量:4
  • 3丁晨阳,彭军.RoboCup中阵型策略的实现[J].计算机仿真,2007,24(7):160-163. 被引量:6
  • 4韩家炜,坎伯,裴建.数据挖掘概念与技术[M].3版.北京:机械工业出版社,2012:295-296.
  • 5Peter Stone,Manuela Veloso.Layered Learning[C].MACHINE LEARNING:ECML 2000 Lecture Notes in Computer Science,2000,1810(2000):369-381.
  • 6Luis Paulo Reis,Nuno Lau,Eugénio Costa Oliveira.Situation Based Strategic Positioning for Coordinating a Team of Homogeneous Agents[C].Lecture Notes in Computer Science,2001,2103(2001):175-197.
  • 7Luis Mota,Nuno Lau,Luis Paulo Reis.Coordination in Robo Cup 2D Simulation League:Set Plays as flexible,MultiRobot plans[C].IEEE Conference on Robotics Automation and Mechatronics Singapore 2010:362–367.
  • 8Hidehisa Akiyama,Ltsuki Noda.Multi-agent Positioning Mechanism in the Dynamic Environment[C].Lecture Notes in Computer Science,2008,5001(2008):377-384.
  • 9彭军.多智能体协作模型及其在机器人足球仿真中的应用[D].中南大学博士学位论文,2005.
  • 10Feng Wu,Shlomo Zilberstein,Xiaoping Chen.Online Planning for Multi-Agent Systems with Bounded Communication[J],Artificial Intelligence,2011,175(2):487-511.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部