期刊文献+

一种带变异操作的粒子群聚类算法 被引量:3

Clustering algorithm based on Particle Swarm Optimization with mutation
下载PDF
导出
摘要 针对基本粒子群算法的早熟收敛和收敛较慢的问题,提出了一种带变异操作的粒子群聚类算法。算法中对出现早熟收敛的种群采取变异操作,使其能够跳出局部最优解。对Iris植物样本数据的测试结果表明:该算法具有很好的全局收敛性和较快的收敛速度。 Aiming at premature convergence and convergence speed of basic particle swarm optimization algorithm,the clustering algorithm based on particle swarm optimization algorithm with mutation is proposed.A mutation operator is used in the algorithm for some particles to escape from the local optimal solution.The algorithm is evaluated on Iris plants database.Results show that the algorithm not only avoids local optima,but also increases the convergence speed.
作者 刘琼 罗可
出处 《计算机工程与应用》 CSCD 北大核心 2010年第16期130-131,134,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.10871031) 湖南省科技计划项目基金(No.2008FJ3015) 湖南省教育厅科研项目基金(No.07A001)~~
关键词 粒子群算法 聚类分析 K均值算法 Particle Swarm Optimization algorithm clustering analysis K-means algorithm
  • 相关文献

参考文献5

  • 1Kennedy J,Eberhart.Particle swarm optimizafion[C] //Proc IEEE Int Conf on Neural Networks Perth,Australia,1995:1942-1948.
  • 2Han J,Kamber M.数据挖掘概念与技术[M].范明,译.北京:机械工业出版社,2007:32-59.
  • 3Liu Jian-hua,Fan Xiao-ping,Qu Zhi-hua.An improved particle swarm optimization with mutation based on similarity[C] //IEEE Computer Society,ICNC 2007,China,2007,4:824-828.
  • 4王桐,刘大昕.一种基于改进粒子群优化的XML结构聚类方法[J].小型微型计算机系统,2007,28(5):871-875. 被引量:8
  • 5刘向东,沙秋夫,刘勇奎,段晓东.基于粒子群优化算法的聚类分析[J].计算机工程,2006,32(6):201-202. 被引量:26

二级参考文献22

  • 1Kennedy J,Eberhart R C,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publisher,2001.
  • 2Kennedy J,Spears W M.Matching Algorithms to Problems:An Experimental Test of the Particle Swarm and Some Genetic Algorithms on the Multimodel Problem Generator[C].Proceedings of the IEEE Int'l Conference on Evolutionary Computation,Anchorage,AK,USA,1998-05:78-83.
  • 3Han Jawei,Kamber M.数据挖掘概念与技术[M].北京:机械工业出版社,2001.
  • 4Jain A K,Dubes R C.Algorithms for Clustering Data[M].New Jersey:Prentice-Hall,1988.
  • 5Selim S Z,Ismail M A.K-Means Type Algorithms:A Generalized Convergence Theorem and Characterization of Local Optimality[J].IEEE Trans.Pattern Anal.Mach.Intell,1984,6(1):81-87.
  • 6Pal S K,Wang P P.Genetic Algorithms for Pattern Recognition[M].Boca Raton:CRC Press,1996.
  • 7Bandyopadhyay S,Maulik U.Genetic Clustering for Automatic Evolution of Clusters and Application to Image Classification[J].Pattern Recognition,2002,35(2):1197-1208.
  • 8Wang J T_L,Zhang K,et al.Exact and approximate algorithms for unordered tree matching[J].IEEE Transactions on Systems,Man and Cybernetics,1994,24(4):668-678.
  • 9Zhang K,Shasha D.On the editing distance between unordered labeled trees[J].Information Processing Letters,1992,42(3):133-139.
  • 10Sultan K S,Khan M M.Computational experience on four algorithms for the hard clustering problem[J].Pattern Recogn.Lett.1996,17,(3):295-308.

共引文献57

同被引文献38

  • 1李霞,罗雪晖,张基宏.基于人工蚁群优化的矢量量化码书设计算法[J].电子学报,2004,32(7):1082-1085. 被引量:16
  • 2佘春东,孙世新,范植华,王茂芝,唐剑,邓洪勤.一种高效的基于模拟退火的LBG算法[J].小型微型计算机系统,2005,26(2):218-221. 被引量:7
  • 3刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 4唐熙曾,姜建新.矢量量化在语音识别中的应用[J].西北大学学报(自然科学版),1989,19(4):43-46. 被引量:1
  • 5陈善学,李方伟.矢量量化与图像处理[M].北京:科学出版社,2009:122-125.
  • 6De CASTRO L N, Von ZUBEN F J. Learning and optimization using the clonal selection principle[J].IEEE Transactions on Evolutionary Computation, 2002, 6 (3) : 239-250.
  • 7PAKH1RA M K, BANDYOPADHYAY A, MAULIK U. Validity index for crisp and fuzzy clustering [J]. Pattern Recognition, 2004, 37(3) : 487-501.
  • 8FERREIRA C. Gene expression programming: a new adaptive algorithm for solving problems[J].Complex Systems, 2001, 13(2) :87-129.
  • 9TSENG L, YANG S. A genetic approach to the automatic clustering problem[J]. Pattern Recognition, 2001, 34 (2) :415-424.
  • 10UJJWAL M, SANGHAMITRA B. Genetic algodthm- based clustering technique [ J ]. Pattern Recognition, 2000, 33(9) :1455-1465.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部