期刊文献+

MLFI:新的最大长度频繁项集挖掘方法 被引量:1

MLFI:New method for maximum length frequent itemsets mining
下载PDF
导出
摘要 在理解现有的最大长度频繁项集挖掘问题的定义,探索最大长度频繁项集的几个具体应用后,提出了一种新的基于FP-tree(Frequent Pattern tree)结构的最大长度频繁项集挖掘方法——MLFI算法。该算法仅对初始的FP-tree实现遍历操作,从而完成对最大长度频繁项集的挖掘。在算法整个执行过程中,仅用到了一棵初始的FP-tree。理论分析和实验证明,该算法加快了挖掘速度,提高了挖掘效率。 After the current definition of the maximum length frequent itemsets mining problem is understood and its many practical applications are explored,an FP-tree-based algorithm is proposed for the mining problem.Maximum length frequent itemsets are mined while traversing the FP-tree in the algorithm.There is only an initial FP-tree.Theoretic analysis and experiments show that the algorithm accelerates the speed to traverse the tree and improves the mining efficiency.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第16期140-142,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.60773100) 河北省教育厅科研计划项目(No.2006143)~~
关键词 数据挖掘 频繁项集 最大长度频繁项集 频繁模式树 data mining frequent itemsets maximum length frequent itemsets FP-tree
  • 相关文献

参考文献7

  • 1Hipp J,Guntzer U,Nakaeizadeh G.Algorithrns for association rule mining-A genera] survey and comparison[C] //ACM SIGKDD International Conference on Management of Data,2000:58-64.
  • 2Pei J,Han J,Pinto H,et al.PrefixSpan:Mining sequential patterns efficiently by prefix-projocted pattern growth[C] //IEEE International Conference on Data Engineering,2001:215-224.
  • 3Xiong I I,Tan P N,Kumar V.Mining strong affinity association patterns in data sets with skewed support distribution[C] //IEEE International Conference on Data Mining,2003:387-394.
  • 4Hu Tian-ming,Fu Qian,Wang Xiao-nan,et al.Mining maximum length frequent itemsets:A summary of results[C] //The 18th IEEE International Conference on Tools with Artificial Intelligence,2006:505-512.
  • 5Hart J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C] //Proc ACM SIGMOD,2000,29(2):1-12.
  • 6王静红,刘教民,郭盛,孙亚非.一种新型快速建立频繁模式树的方法[J].计算机应用,2008,28(3):735-737. 被引量:2
  • 7UCI machine learning repository[EB/OL].Univ of CA,Irvine.http://archive.ies.uei.edu/ml/.

二级参考文献10

  • 1AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[ C]//Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann Publishers, 1994:487 -499.
  • 2AGRAWAL R, SRIKANT R. Mining sequential patterns[ C]//Proceedings of the llth International Conference on Data Engineering. Los Alamitos, CA: IEEE Computer Society Press, 1995:3 - 14.
  • 3SRIKANT R, AGRAWAL R. Mining sequential patterns: Generalizations and performance improvements[ C]// Proceedings of the 5th International Conference on Extending Database Technology. London: Springer-Verlag, 1996:3 - 17.
  • 4MASSEGLIA F, CATHALA F, PONCELET P. The PSP approach for mining sequential patterns[ C]//Proceedings of the 2nd European Symposium on Principles of Data Mining and Knowledge Discovery. Nantes, France: [s. n. ], 1998:176 - 184.
  • 5HAN J, PEI J, MORTAZAVI- ASL B, et al. FreeSpan: Frequent pattern-projected sequential pattern mining[ C]//Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2000:355 -359.
  • 6PEI J, HAN J, PINTO H, et al. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth[ C] // Proceedings of the 17th International Conference on Data Engineering. Los Alamitos, CA: IEEE Computer Society Press, 2001:215 -224.
  • 7HAN J, PEN J, YIN Y. Mining frequent patterns without candidate generation[ C]// Proceedings of 2000 ACM-SIMOD. New York: ACM Press, 2000:1 - 12.
  • 8GRAHNE G, ZHU J F. High performance mining of maximal frequent itemsets[ C]// Proceedings of the 6th SIAM International Workshop on High Performance Data Mining. [S. l.]: SIAM, 2003:135 - 143.
  • 9PASQUIER N, BASTIDE Y, TAOUIL R, et al. Discovering frequent closed itemsets for association rules[ C]// Proceedings of International Conference on Database Theory, LNCS 1540. London, UK: Springer, 1999:398-416.
  • 10IBM Almaden Research Center . Quest synthetic data generation [ EB/OL]. [ 2007 - 10 - 01]. http://www. almaden. ibm. com/ software/quest/Resources/datasets/syndata.htnl.

共引文献1

同被引文献4

  • 1Hu Tianming, Fu Qian, Wang Xiaonan, et al.Mining maxi- mum length frequent itemsets:a summary of results[C]// The 18th IEEE International Conference on Tools with Artificial Intelligence, 2006: 505-512.
  • 2Pei J, Han J, Pinto H, et al.PrefixSpan:mining sequential patterns efficiently by prefix-projected pattern growth[C]// IEEE International Conference on Data Engineering,2001: 215-224.
  • 3UCI machine learning repository[EB/OL].Univ of CA, Ir- vine.http://archive.ics.uci.edu/ml/.
  • 4陈晨,鞠时光.基于改进FP-tree的最大频繁项集挖掘算法[J].计算机工程与设计,2008,29(24):6236-6239. 被引量:14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部