期刊文献+

无抽样方向滤波器组用于图像去噪的方法研究 被引量:1

Research on image denoising using decimation-free directional filter banks
下载PDF
导出
摘要 提出一种基于无抽样方向滤波器组的图像去噪新方法,首先,将一维半带滤波器(half band filter)转换成二维低通滤波器,通过对此滤波器的各种操作获得4方向、8方向和16方向等无抽样方向滤波器组,同时,将各频域方向滤波器转换成空域模板;其次,采用Contourlet变换中的多尺度分解方法,利用上述空域模板实现图像方向分解,获得噪声图像的各尺度多方向系数;最后,根据各方向系数的统计特性,合理设定去噪阈值,方向合成只需各方向子带图像相加,多尺度合成过程与Contourlet变换相同,完成图像去噪。实验结果表明:该方法不仅有效地去除了图像噪声,而且能很好地保留图像的边缘纹理信息,并很好地去除了Contourlet变换去噪中无法避免伪吉布斯现象所引起的视觉失真,与现有阈值去噪方法相比,图像信噪比明显提高。 This paper presents a new method of image denoising based on decimation-free directional filter banks.First,all the filters like four-direction,eight-direction and sixteen-direction directional filter banks are revealed by filters'rotating,skewing and/or scaling.This paper transforms all directional filters in frequency domain to spatial operators,and uses multiscale analysis of Contourlet transform and spatial operators to analyze the input image and get coefficients.At last,the paper chooses the reasonable threshold based on statistic traits of all coefficients.Directional synthesis can be achieved by just simply adding all the subband images.Multiscale synthesis is the same as Contourlet transform.The experimental results indicate that the method avoids false Gibbs visual distortion and is better than the existing denoising algorithms in smoothing noises,preserving image textures and details and improving the SNR of image.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第16期166-169,190,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60672115)~~
关键词 无抽样方向滤波器组 CONTOURLET变换 图像去噪 decimation-free directional filter banks Contourlet transform image denoising
  • 相关文献

参考文献11

  • 1Donoho D L.De-noising by seft-thresholding[J].IEEE Transactions on Information Theory,1995,41 (3):613-627.
  • 2Donoho D,Johnstone Lldeal spatial adaption via wavelet shrinkage[J].Biometrika,1994,81:425-455.
  • 3戴维,于盛林,孙栓.基于Contourlet变换自适应阈值的图像去噪算法[J].电子学报,2007,35(10):1939-1943. 被引量:52
  • 4Do M N,Vetterli M.Contourlets:A directional muhiresolution image representation[C] //Proc ICIP,New York,USA,2002:357-360.
  • 5Do M N,Vetterli M.The finite ridgelet transform for image representation[J].IEEE Transactions on Image Precessing,2003,12(1):16-28.
  • 6Stsrck J-L,Candes E J,Donoho D L.The curvelet transform for image denoising[J].IEEE Transactions on Image Processing,2002,11 (6):670-684.
  • 7Do M N,Vetterli M.The Contourlet transform:An efficiont directional multireselution image representation[J].IEEE Transactions on Image Processing,2005,14:2091-2106.
  • 8Dunncan D Y Po,Mihn N D.Directional muhiseale modeling of images using the Contourlet transform[J].IEEE Transactions on Image Processing,2006,15(6):1610-1620.
  • 9Ansari R.Efficient IIR and FIR fan filters[J].IEEE Transactions on Circuits and Systems,1987,CAS-34(8):941-945.
  • 10Bamberger R H,Smith M J T.A filter bank for the directional decomposition of images:Theory and design[J].IEEE Transactions on Signal Processing,1992,40(4):882-892.

二级参考文献11

  • 1Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995,41 (3) : 613 - 627.
  • 2Do MN. Directional multiresolution image representation[D]. PhD the2sis, EPFL, Lausanne, Switzerland, 2001.
  • 3Do M N, Vetterli M. Contourlets: a directional multi-resolution image representation [A]. IEEE International Conference on Image Processing[C]. Rochester, NY: IEEE, 2002. 357 - 360.
  • 4Mink N Do, Martin Vetterli. The finite Ridgelet transform for image representation[J]. IEEE Transactions on Image Processing, 2002,1 (12): 16 - 28.
  • 5J-L Starck, E J Candes, D L Donoho. The curvelet transform for image de-noising[J]. IEEE Transactions on Image Processing, 2002,6(11): 670 - 684.
  • 6Mirth N Do, M Vetterli. The Contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing to appear, 2005, 14 (12) : 2091 - 2106.
  • 7D H Hubel, T N Wiesel. Receptive fields, binocular interaction and functional architecture in the cat' s visual cortex[J]. Journal of Physiology 1962,160(1): 106 - 154.
  • 8M N Do, M Vetterli. Pyramidal directional filter banks and curvelet[A]. In Proceeding on Image Processing[C]. Thessa-loniki,Greece: IEEE,2001. 158 - 161.
  • 9P J Burt, E H Adelson. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Commune, 1983,4(31) : 532 - 540.
  • 10Weyrich N, Warhola G T. Wavelet shrinkage and generalized cross validation for image denoising[J]. IEEE Transactions on Image Proceeding, 1998,7 (1): 82 - 90.

共引文献51

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部