期刊文献+

GHSOM在遥感图像分割中的应用 被引量:1

Segmentation of remote sensing image using GHSOM
下载PDF
导出
摘要 提出一种基于自组织增长分级神经网络(Growing Hierarchical Self-Organizing Map,GHSOM)的遥感图像分类方法。首先详细分析了GHSOM方法的基本原理和算法,然后成功将其应用于遥感图像分类。实验结果表明了GHSOM通过分级的分类方法有效解决了SOM分类中的混分问题,大大提高了分类精度和效率,是一种新的有效的无监督遥感图像分类方法。 A Growing Hierarchical Self-Organizing Map(GHSOM) based remote sensing image classification method is presented.Its theory and algorithm are introduced firstly,and then it is successfully applied to remote sensing image classification.Experimental results show that GHSOM solves classification confusion problem of SOM,and greatly improves classification accuracy and efficiency for remote sensing data.GHSOM method is a new efficient unsupervised remote sensing image classification method.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第16期188-190,共3页 Computer Engineering and Applications
基金 江苏省自然科学基金(No.BK2006081)~~
关键词 自组织神经网络 图像分割 自组织增长分级神经网络 Self-Organizing Map(SOM) image segmentation Growing Hierarchical SOM
  • 相关文献

参考文献6

  • 1Alahakoon D,Halgarmuge S K,Srinivasan B.Dyusmic self-organizing maps with controlled growth for knowledge discovery[J].IEEE Transactions on Neural Network,2000,11 (3):601-614.
  • 2Choir D,Park S.Self-creating and organizing neural networks[J].IEEE Transactions on Neural Networks,1994,5(4):561-575.
  • 3Fritzke B.Growing cell structures-a self-organizing network for unsupervised and supervised learning[J].Neural Networks,1994,7(9):1441-1460.
  • 4Lampinen J,Oja E.Clustering properties of hierarchical self-organizing maps[J].Joumal of Mathematical Imaging and Vision,1992,2(2/3):261-272.
  • 5Yen G G,Wu Zheng.Ranked centroid projection:A data visualization approach with self-organizing maps[J].IEEE Transactions on Neural Networks,2008,19(2):245-259.
  • 6Kohonen T,Ritter H.Self-organizing semantic maps[J].Biologieal Cybernetics,1989,61(4):241-254.

同被引文献18

  • 1张韧,王海俊,孙照渤,牛生杰,刘科峰.双光谱卫星云图的模糊推理云分类[J].防灾减灾工程学报,2004,24(3):257-263. 被引量:6
  • 2吴咏明,张韧,蒋国荣,孙照渤,牛生杰.多光谱卫星图像的一种模糊聚类方法[J].热带气象学报,2004,20(6):689-696. 被引量:18
  • 3Desbois M, Seze G, Szejwach G. Automatic classification of clouds on METEOSAT imagery [ J ]. Journal of Applied Meteorogy, 1981,3(21 ) :401-412.
  • 4Ameur Z, Ameur S, AdaneE A, et al. Cloud classication using the textural features of Meteosat images [ J]. Remote Sensing,2004,25 (4) :4491-4503.
  • 5Berendes T, Meeikalski J, Mackenzie W, et al. Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive cluste-ring [ J ]. Journal of Geophysical Research, 2008, 113 (20) :1-9.
  • 6Berendes T A, Kuo K S, Logar A, et al. A comparison of paired histogram, maximum likelihood, class elimination, and neural network approaches for daylight global cloud classification using AVHRR imagery [ J ]. Journal of Geo- physical Research, 1999,104(D6) :6199-6213.
  • 7Bankert R. Cloud classification of AVHRR imagery in mar- itime regions using a probabilistic neural network [ J ]. Journal of Applied Meteorology, 1994,33 (8) :909-918.
  • 8Ahmed T. A system based on ratio images and quick prob- abilistic neural network for continuous cloud classification [ J ]. IEEE Transactions on Geoscience and Remote Sens- ing ,2011,49 (12) : 1196-1203.
  • 9Liu Yu, Xia Jun, Shi Chunxiang, et al. An improved cloud classification algorithm for China FY-2C multi-channel im- ages using artificial neural network [ J ]. Sensors, 2009,9 (7) :5558-5579.
  • 10Tian B, Shaikh M, Azimi-Sadjadi M, et al. A study of cloud classification with neural networks using spectral and tex- tural features [ J]. IEEETransactions on Neural Networks, 1999,10 ( 1 ) : 138-151.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部