期刊文献+

用MC-QPSO算法求解并行流水车间调度问题 被引量:2

Parallel flow-shop scheduling problem based on cooperative evolutionary quantum particle swarm optimization algorithm with multi-populations
下载PDF
导出
摘要 针对并行流水车间调度问题的特点,提出了一种基于多种群协同进化的改进量子粒子群算法(MC-QPSO)进行求解。首先将整个量子粒子种群分解为多个子种群,然后各个子种群独立地演化,并通过周期性共享搜索信息,以获得对自身信息的更新。最后,通过具体仿真实例进行了求解验证,结果表明,在求解并行流水车间调度问题时,基于多种群协同的量子粒子群算法,在收敛速度、寻优性能等方面,都要优于遗传算法。 According to the characteristics of parallel flow-shop scheduling problem,a new quantum particle swarm optimizer,called the cooperative evolutionary QPSO with multi-populations(MC-PSO),is presented based on the analysis of the standard QPSO.The whole quantum particle swarm group is divided into several sub-groups.Every subgroup evolves independently and updates sharing information periodically.This paper uses a practical analysis to confirm the performance of the method.The results show that MC-QPSO is effective in solving the problem.The results of simulation indicate that MC-QPSO performs better than the genetic algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第16期229-231,共3页 Computer Engineering and Applications
基金 上海市(第三期)重点学科项目(No.S30504) 上海市研究生创新基金项目(No.JWCXSL0802)
关键词 量子粒子群算法 并行流水车间调度 协同进化 Quantum Particle Swarm Optimization(QPSO) parallel flow-shop scheduling problem cooperative evolutionary
  • 相关文献

参考文献10

二级参考文献72

共引文献851

同被引文献30

引证文献2

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部