期刊文献+

NMF的数据分类方法在肿瘤分类上的应用 被引量:1

NMF-based method for data classification
下载PDF
导出
摘要 在生物信息学中,一个重要的问题是基于微芯片技术将肿瘤分类到不同的类别中去。和许多传统的分类问题相比,这个问题的主要困难是基因空间的维数很高,而要分类的样本数量很小。非负矩阵分解(NMF)在微芯片数据聚类问题中已经成功地解决了这个问题。将非负矩阵分解拓展到数据分类,尤其是肿瘤分类中去取得了很好的效果。基于非负矩阵分解的方法有三个优点:良好的分类成绩,无参数和良好的可解释性。 In bioinformatics,an important task is to classify tumor samples into different classes based on microarray technology which enables people to monitor entire genome in a single chip using a system's approach.The key difficulty of this problem,compared with many traditional classification problems,is the high dimensionality in gene space and the small number of samples that will be classified.Non-negative Matrix Factorization(NMF) has coped with this difficulty successfully in microarray data clustering.NMF is extended to tumor classification and the result shows its competition.NMF-based method has three advantages:Good classification performance,parameter-independent and good interpretability.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第16期245-248,共4页 Computer Engineering and Applications
基金 国家青年基金(No.10801112) 中央财经大学学科建设基金~~
关键词 非负矩阵分解 微芯片 数据分类 Non-negative Matrix Factorization(NMF) microarray data classification
  • 相关文献

参考文献24

  • 1Lee D D,Seung H S.Learning the parts of objects by non-negative matrix faetorization[J].Nature,1999,401:788-791.
  • 2Lee D D,Seung H S.Algorithms for non-negative matrix factorization[J].Advances in Neural Information Processing Systems,2001,13:556-562.
  • 3Catral M,Lixing H,Michael N,et al.On reduced rank nonnegative matrix factorization for symmetric nonnegative matrices[J].Linear Algebra and its Applications,2004,393:107-126.
  • 4Patrik O H.Non-negative matrix factorization with sparseness constraints[J].Journal of Machine Learning Reseoreh,2004,5:1457-1469.
  • 5lnderjit S D,Suvrit S.Generalized nonnegafive matrix approximations with bregman divergences[C] //Proc Neural Information Processing Systems(NIPS),Vancouver,Canada,2005.
  • 6Heger A,Holm L.Sensitive pattern discovery with 'fuzzy' alignments of distantly related proteins[J].Bioinformatics,2003,19(Suppl):i130-i137.
  • 7Jean-Philippe B,Pablo T,Todd R G,et al.Matagenes and molecular pattern discovery using matrix facterization[J].Proc Nail Acad Sei USA,2004,101:4164-4169.
  • 8Stefan W,James C,Anne D.Motivating non-negative matrix factorization[C] //Preceedings of the Eighth SIAM Conference on Applied Linear Algebra,Williamsburg,VA,July 15-19,2003.
  • 9Cooper M,Foote J.Summarizing video using non-negative similarity matrix factorization[C] //Proc IEEE Workshop on Multimedia Signal Processing,2002:25-28.
  • 10Pauca V P,Shahmaz F,Berry M W,et al.Text mining using nonnegative matrix faetorization[C] //Pree SIAM Int'l Cod on Data Mining,2004:452-456.

同被引文献11

  • 1高茂庭,王正欧.几种文本特征降维方法的比较分析[J].计算机工程与应用,2006,42(30):157-159. 被引量:16
  • 2曹胜玉,刘来福.非负矩阵分解及其在基因表达数据分析中的应用[J].北京师范大学学报(自然科学版),2007,43(1):30-33. 被引量:13
  • 3Xu L, Furlotte N, Lin Y, et al. Functional cohesion of gene sets determined by latent semantic indexing of PubMed abstracts [J]. PloSOne, 2011, 6 (4): e18851.
  • 4Li F, Zhu Q, Lin X. Topic discovery in research literature based on non-negative matrix factorization and testor theory [C] //Information Processing Asia-Pacific Conference on, 2009: 266-269.
  • 5Jeon K M, Park N I, Kim H K, et al. Mechanical noise sup-- pression based on non-negative matrix factorization and multi-bandspectral subtraction for digital cameras [J]. IEEE Transactions on Consumer Electronics, 2013, 59 (2): 296-302.
  • 6Kang B C, Sur Z W, Park C, et al. Document clustering of MEDLINE abstracts based on non-negative matrix factorization using local confidence assessment [J]. BioChip Journal, 2010, 4 (4): 336-349.
  • 7Manine, A P, Alphonse E, Bessieres P. Learning ontological rules to extract multiple relations of genie interactions from text[J]. International Journal of Medical Informaties, 2009, 78 (12): 31-38.
  • 8Wang Y X, Zhang Y J. Image inpainting via weighted sparse non-negative matrix factorization [C] // 18th IEEE Interna- tional Conference on Image Processing, 2011.. 3409-3412.
  • 9Heinrich K E, Berry M W, Homayouni R. Gene tree labeling using nonnegative matrix factorization on biomedical literature [J]. Computational Intelligence and Neuroscience, 2008 (2008) : 12.
  • 10石金龙,骆志刚.非负矩阵分解算法及其在生物信息学中的应用研究[J].计算机工程与科学,2010,32(8):117-123. 被引量:6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部