期刊文献+

500 kV直流GIL支撑绝缘子的电场优化 被引量:10

Electric Field Optimization of the Supporting Insulator of 500 kV DC GIL
下载PDF
导出
摘要 随着电网建设的日益深入,直流气体绝缘金属封闭输电管道(GIL)由于可用在高电压、大容量的场合,用作经济的长距离输电线路而被提上研究日程。直流GIL支撑绝缘子的沿面闪络很大程度上是由表面电荷积聚引起的。直流下GIL的内部稳态电场分布主要受环氧树脂固体绝缘的电导率和形状控制。以500 kV直流GIL为计算模型,借助COMSOL软件,研究了GIL中支撑绝缘子的形状、体积电导率和表面电导率对电场分布的影响。研究认为,半圆锥式绝缘子的电场分布是最优化的,绝缘子的体积电导率对其电场分布影响不大,通过控制绝缘子表面电导率,可以控制和优化直流GIL中绝缘子沿面电场分布。 The surface flashover of supporting insulators of DC gas insulated transmission line(GIL) GIL is mainly induced by surface charge accumulation.The distribution of interior electric field of DC GIL is mainly controlled by conductivity and geometry of insulator made of epoxy resin.Therefore,a model of 500 kV DC GIL is established in this paper,and the influences of geometry,volume conductivity,and surface conductivity of supporting insulators of GIL on electric field distribution are analyzed with the software COMSOL.The results show that the electric field distribution of semi-conical insulators is the optimum,the volume conductivity of the insulators exerts weak influence on the electric field distribution,and the electric field distribution on insulator surface of DC GIL can be controlled and optimized by controlling the surface conductivity of the insulators.
出处 《高压电器》 CAS CSCD 北大核心 2010年第6期18-21,24,共5页 High Voltage Apparatus
基金 国家自然科学基金(50877073)
关键词 电场优化 电场分布 表面电荷积聚 形状 表面电导率 体积电导率 field optimization field distribution surface charge accumulation geometry surface conductivity volume conductivity
  • 相关文献

参考文献12

  • 1BENATO R, CARLINI E M, DI MARIO C, et al. Gas Insulated Transmission Lines in Railway Galleries [J]. IEEE Transactions on Power Delivery, 2005, 20(2): 704-709.
  • 2KOCH H J. Gas-insulated Transmission Line (GIL)[C]//Power Engineering Society General Meeting. Toronto, Canada: IEEE, 2003: 13-17.
  • 3TAKINAMI N, KOBAYASHI S, MIYAZAKI A. Applications of the World's Longest Gas Insulated Transmission Line in Japan[C]//Preceedings of the 7th International Conference on Properties and Applications of Dielectric Materials. Nagoya, Japan: IEEE, 2003: 19-22.
  • 4HILLERS T. Gas Insulated Transmission Lines (GIL):Ready for the Real World[C]//Power Engineering Society Winter Meeting. Singapore: iEEE, 2000: 575-579.
  • 5SABOT A. Insulation Co-ordination Procedure for 420 kV Gas Insulated Lines(GIL)[C]//Eleventh International Symposium on High Voltage Engineering.London, UK: IEEE, 1999: 1-10.
  • 6汪沨,方志,邱毓昌.高压直流GIS中绝缘子的表面电荷积聚的研究[J].中国电机工程学报,2005,25(3):105-109. 被引量:75
  • 7OKABE S. Phenomena and Mechanism of Electric Charges on Spacers in Gas Insulated Switchgears[J].IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(1): 46-52.
  • 8KAMINAGA K,KOSHIISHI M,HAYASHI T,et al. Development of Compact 500 kV 8 000 A Gas Insulated Transmission Line-dust Control During Field Jointing and Method for Detecting Conductive Particles[J].IEEE Transactions on Power Delivery, 1987, PWRD-2(4): 961-968.
  • 9EVGENI K VOLPOV. HVDC Gas Insulated Apparatus: Electile Field Specificity and Insulation Design Concept [J]. IEEE Electrical Insulation Magazine, 2002, 18(2): 7-36.
  • 10HASEGAWA T,YAMAJI K,HATANO M.Development of Insulation Structure and Enhancement of Insulation Reliability of 500 kV DC GIS[J].IEEE Transactions on Power Delivery, 1997, 12(1): 104-202.

二级参考文献25

共引文献87

同被引文献113

引证文献10

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部