期刊文献+

一种基于负熵的信赖区域盲分离方法 被引量:1

A method of blind source separation based on maximizing the trust region of negative entropy
下载PDF
导出
摘要 研究基于瞬时混合信号的盲分离问题。以负熵作为代价函数,提出了一种基于最大化负熵的信赖区域盲源分离方法,该方法保持了牛顿法的快速收敛特性,具有全局收敛性。分别用基于负熵的信赖区域法和牛顿算法对三路随机混合信号实施分离,仿真结果证明该方法且具有和牛顿算法一样的收敛速度,而稳态误差比牛顿算法减小约7dB,因此具有更好的稳态性能。 Blind separation of linearly mixed signals is studied in this paper. A method of blind source separation based on maximizing the trust region of negative entropy is proposed.This approach not only retains the fast convergence characteristics of Newton method,but also has global convergence.These two methods are both used for the separation of three-way random mixed signals.Simulation results show that trust region method has the same convergence rate as Newton method,while it has better steady state performance.The steady-state error can reduce about 7dB compared with that of the Newton method.
出处 《西安邮电学院学报》 2010年第3期14-18,共5页 Journal of Xi'an Institute of Posts and Telecommunications
基金 陕西省自然科学基础研究计划项目(SJ08-ZT14) 西安市科技计划项目(CXY08017(1))
关键词 盲源分离 独立分量分析 负熵 blind source separation independent component analysis negative entropy
  • 相关文献

参考文献10

  • 1Comon P.Independent Component analysis:a new con-cept[J].Signal Processing,1994,36(3):287-314.
  • 2Amari S,Cichocki A,Yang H H.A new learning Algo-rithm for blind signal separation[C].Advances in Neural Information Processing Systmas.Cambridge:MIT Press,1996,8:757-763.
  • 3Yang H H,Amari S.Adaptive online learning algorithms for blind separation:Maximum entropy and minimum mutual information[J].Natural Computation,1997,9(5):1457-1482.
  • 4Cardoso J F,Laheld B.Equivariant adaptive source sepa-ration[J].IEEE Trans Sgnal Processing,1996,44(12):3017-3030.
  • 5Lee TW,Sejnowski T J Independent component analysis using an extended infomax algorithm for mixed sub-gaus-sian and super-gaussian scurces[J].Neural Computation.1999,11(2):409-433.
  • 6Hyvarinen A.Fast and robust fixed-point algorithm for independent oomponent analysis[J].IEEE Tram Neural Network,1999,10(3):626-634.
  • 7Hyvarinen A.New approximization of differential en-tropy for independent component analysis and projection pursuit[C].Advances in Neural Information Processing System,MIT Press,Cambridge,MA,1998,10:273-279.
  • 8Joho M,Rahbar K.Joint diagonalization of correlation matrices by using Newton methods with application to blind signal separation,SenSor Array and Multichannel Signal Processing Workshop proceedings Rosslyn,2002:403-407.
  • 9Hyvarinen A.Karhunen J.and Oja E.Independent component analysis[M].New York,John Wley & Sons,2001.
  • 10Philippe L.Toint.Non-monotone trust-region algo-rithms for nonlinear optimization subject to convex con-straints[J].Mathematical Programming,1997,77(3):69-94.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部