摘要
采用稳定型双共轭梯度快速Fourier变换(BCGS-FFT)算法精确计算二维均匀介质中的积分方程.采用一种新的插值函数作为基函数和试探函数对积分方程进行弱化离散,离散后的积分方程采用稳定型双共轭梯度迭代方法进行求解,从而得到异常体内电场的分布.计算时采用快速Fourier变换技术将积分方程内Green函数与电场的乘积表示成褶积形式以加快计算速度.数值计算举例说明了算法的精确性和有效性.
The integral equations in a 2D homogeneous medium are accurately calculated by the stabilized biconjugate-gradient fast Fourier transform(BCGS-FFT)algorithm.The new interpolating function is chosen as basis and testing functions to get the weak-form discretization of the integral equations.The discrete form of the integral equations is solved via the stabilized biconjugate-gradient iteration method,and the distribution of the electric field within the abnormal objects can be obtained.The product between the Green's function and the electric field within the integral equations can be expressed in the form of convolution,which can be accelerated by fast Fourier transform.Numerical examples have shown the accuracy and efficiency of the algorithm.
出处
《地球物理学进展》
CSCD
北大核心
2010年第2期674-680,共7页
Progress in Geophysics
基金
教育部科学技术研究重点项目(109101)
山东省自然科学基金项目(Y2007E06)资助
关键词
均匀介质
积分方程
BCGS-FFT算法
电磁散射
homogeneous medium
integral equations
BCGS-FFT algorithm
electromagnetic scattering