期刊文献+

一种自适应磨粒图像分割方法的应用研究 被引量:2

Research of adaptive segmentation method in wear debris image
下载PDF
导出
摘要 利用计算机图像处理技术实现铁谱图像诊断自动化是铁谱技术发展的目标,铁谱磨粒图像分割是磨粒自动识别的重要环节,其分割效果直接影响磨粒识别的精度。原始区域生长算法需要提供种子点以及生长阈值才能进行图像分割。不同的种子点和不同的阈值会对分割效果产生很大影响。提出一种结合模糊C均值的区域生长算法,可根据磨粒图像自动获取种子点,并利用模糊互信息自动确定生长阈值,实现磨粒图像的自动分割。实验结果验证了该方法的有效性。 It is the purpose of the development of ferrography to analysis of ferrography images using the computer image dispose technology.The segmentation method of ferrographic debris image is the important tache,and its segmentation effect affects recognizing precision directly.The original region growing algorithm needs the supply of the initial point selection and the growing threshold.Different supply of these data will influence the segmentation effect seriously.A new region growing algorithm is presented.It can get the initial point selection and growing threshold automatically with the help of the FCM algorithm and the fuzzy mutual information.It implements the automatic segmentation of the wear deris image.Experimental results show that the algorithm is more feasible.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第17期185-187,共3页 Computer Engineering and Applications
基金 国家自然科学基金 No.50705097 中国人民解放军军械工程学院科研基金资助项目(No.YJJXM08009)~~
关键词 铁谱 磨粒 图像分割 区域生长 模糊互信息 ferrography wear debris image segmentation region growing fuzzy mutual information
  • 相关文献

参考文献7

  • 1杨其名.磨粒分析——磨粒图谱与铁谱技术[M].北京:中国铁道出版社,2002.
  • 2Wan S Y,Higgins W E.Symmetric region growing[J].Image Processing, 2003,12(9) : 1007-1015.
  • 3Pohle R,Toennies K D.A new approach for model-based adaptive region growing in medical image analysis[C]//Proceedings of the 9th International Conference on Computer Analysis and Patterns,Warsaw, 2001 : 238-246.
  • 4Orphanoudakis S C,Tziritas G,Haris K.A hybrid algorithm for the segmentation of 2D/3D images[C]//Proceedings of International Conference on Information Proceeding in Medical Imaging,Brest,1995: 385-386.
  • 5宋相法,李声威,陈国强,葛泉波,陈志国.基于改进的Fuzzy C-means聚类算法的纹理分割[J].河南大学学报(自然科学版),2005,35(1):69-71. 被引量:5
  • 6吕庆文,陈武凡.基于互信息量的图像分割[J].计算机学报,2006,29(2):296-301. 被引量:40
  • 7吴成茂.模糊互信息及其在图像分割中的应用[J].计算机工程,2008,34(7):218-220. 被引量:3

二级参考文献28

  • 1吕庆文,陈武凡.基于互信息量的图像分割[J].计算机学报,2006,29(2):296-301. 被引量:40
  • 2Feng Y.,Chen W..Brain MR image segmentation using fuzzy clustering with spatial constraints based on Markov random field theory.In:Proceedings of MIAR 2004 (LNCS 3150),2004,188~ 195.
  • 3Yang F.,Jiang T..Pixon-based image segmentation with Markov random fields.IEEE Transactions on Image Processing,2003,12(12):1552~1559.
  • 4Zhang Y.,Brady M.,Smith S..Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.IEEE Transactions on Medical Imaging,2001,20(1):45~57.
  • 5Maes F.,Collignon A..Multimodality image registration by maximization of mutual information.IEEE Transactions on Medical Imaging,1997,16(2):187~198.
  • 6Kim J.,Fisher J.W.,Yezzi A.et al..Nonparametric methods for image segmentation using information theory and curve evolution.In:Proceedings of ICIP 2002,New York,2002,797~800.
  • 7Rigau J.,Feixas M.,Sbert M.etal..Medical image segmentation based on mutual information maximization.In:Proceedings of MICCAI 2004,Saint-Malo,France,2004,135~142.
  • 8Kim J.,Fisher J.W.,Cetin M.et al..Incorproating complex statistical information in active contour -based image segmentation.In:Proceedings of ICIP 2003,Bercelona,Spain,2003,655~658.
  • 9Akaike H..A new look at the statistical model identification.IEEE Transactions on Automatic Control,1974,19(6):716~723.
  • 10Kirkpatrick S.,Gelatt C.D.,Vecchi M.P..Optimization by simulated annealing.Science,1983,220:671~680.

共引文献44

同被引文献17

  • 1李博,吕浩文,吴伟,郑杰,席寅虎.全视场在线图像可视铁谱磨粒显微成像特性分析[J].仪器仪表学报,2022,43(2):26-35. 被引量:2
  • 2鲍晴峰,王继成.基于PCNN的彩色图像分割新方法[J].计算机工程与应用,2005,41(27):48-50. 被引量:19
  • 3傅建平,张培林,李国章.基于类间最大方差法的铁谱磨粒彩色图像自动分割[J].军械工程学院学报,2006,18(1):37-39. 被引量:2
  • 4杨其名.磨粒分析-磨粒图谱与铁谱技术[M].北京:中国铁道出版社,2002.
  • 5LU Y F, MIAO J, DUAN L J, et al. A new approach to image segmentation based on simplified region growing PCNN[J]. Applied Mathematics and Computation, 2008, (205): 807-814.
  • 6RANGANATH H S. Object detection using pulse coupled neural networks[J]. IEEE Transaction Neural Networks, 1999, 10(3): 615-620.
  • 7GU X D. Feature extraction using unit-linking pulse coupled neural network and its applications[J]. Neural Process Letter, 2008, 27(1): 25-41.
  • 8RAFAEL C C~ RICHARD E W, SREVEN L E. Digital image processing using MATLAB[M]. Translated by Ruan Q Q. Beijing: Publishing House of Electronics Industry, 2005.
  • 9ECKHORN R, REITBOECK H J, ARNDTETAL M, et al. Feature linking via synchronization among distributed assemblies: simulation of results from cat cortex[J]. Neural Computation, 1990, 2(3): 293-307.
  • 10MAY D, SHI F, LI L. Gaussian noise filter based on PCNN[C]. IEEE ICNNSP, 2003, 1(1): 149-151.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部