期刊文献+

水文时间序列的相似性搜索研究 被引量:16

Similarity search in hydrological time series
下载PDF
导出
摘要 将时间序列相似性搜索的数据挖掘方法应用于水文时间序列数据中,挖掘相似的水文过程.在分析欧氏距离和动态时间扭曲距离两种相似性距离度量方法特点的基础上,采用对时间轴的伸缩和弯曲具有较好适应性的动态时间扭曲距离法对塔里木河流域源流区出山口水文站沙里桂兰克站1961—2000年共220场洪水流量过程进行相似性搜索,基于相似性距离度量矩阵,挖掘出相似的洪水流量过程.结果表明,沙里桂兰克站洪水过程虽形态多样,但也表现出一定的相似性,基于动态时间扭曲法的相似性搜索能有效挖掘出相似的水文过程. Data mining in the time series similarity search was applied to hydrological time series data for mining similar hydrological processes. The characteristics of two kinds of similarity distance measuring methods,Euclidean distance and dynamic time warping distance,were analyzed. Owing to its satisfactory adaptability in terms of stretching and warping to the time axis,the dynamic time warping distance method was employed to perform a similarity search of 220 floods at Shaliguilanke Station in the Tarim River Basin in China from 1961 to 2000. Based on the similarity matrices,the similar flood discharge processes were mined. The results show that although the flood discharge processes at Shaliguilanke Station are diverse,they exhibit a certain similarity. The similarity search based on the dynamic time warping can be employed for effective mining of similar hydrological processes.
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期241-245,共5页 Journal of Hohai University(Natural Sciences)
基金 世界银行合作项目(THSD-07) 高等学校学科创新引智计划(B08048)
关键词 水文时间序列 洪水过程 数据挖掘 相似性搜索 动态时间扭曲 hydrological time series flood process data mining similarity search dynamic time warping
  • 相关文献

参考文献17

  • 1FAYYAD U M,PIATETSKY-SHAPIRO G,SMYTH P,et al.Advances in knowledge discovery and data mining[M].Menlo Park,California,USA:AAAI Press,1996:307-328.
  • 2ROSENSTEIN M T,COHEN P R.Concepts from time series[C]//The American Association for Artificial Intelligence.Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98).Menlo Park,California,USA:AAAI Press,1998:739-745.
  • 3MAMNILA H,TOIVONEN H,VERKAMO A I.Discovering frequent episodes in sequences[C]//FAYYAD U M,UTHURUSAMY R.Proceeding of the First International Conference on Knowledge Discovery and Data Mining (KDD-95).Menlo Park,California,USA:AAAI Press,1995:210-215.
  • 4AGRAWAL R,IMIELINSKI T,SWAMI A N.Mining association rules sets of items in large databases[C]//BUNEMAN P,JAJODIA S.Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data.New York:ACM Press,1993:207-216.
  • 5DAS G,LIN K I,MAMNILA H,et al.Rule discovery from time series[C]//AGRAWAL R,STOLORZ P E,PIATETSKY-SHAPIRO G.Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98).Menlo Park,California,USA:AAAI Press,1998:16-22.
  • 6HAN J W,YIN Y W,DONG G Z.Efficient mining of partial periodic patterns in time series database[C]//KITSUREGAWA M,MACIASZEK L,PAPAZOGLOU M,et al.Proceeding of the Fifteenth International Conference Data Engineering (ICDE 1999).Los Alamitos,California,USA:IEEE Computer Society Press,1999:106-115.
  • 7BETTINI C,JAJODIA S,WANG S.Time granularities in databases,data mining and temporal reasoning[M].New York:Springer-Verlag,2000.
  • 8POVINELLI R J.Time series data mining:identifying temporal patterns for characterization and prediction of time series events[D].Milwaukee,Wisconsin:Marquette University,1999.
  • 9HAN J W,KAMBER M.Data mining:concepts and techniques[M].San Francisco,USA:Morgan Kaufmann,2001.
  • 10张保稳,何华灿.时态数据挖掘研究进展[J].计算机科学,2002,29(2):124-126. 被引量:15

二级参考文献41

  • 1方崇惠,徐高洪.漳河水库分期设计洪水研究[J].长江工程职业技术学院学报,2004,21(3):1-3. 被引量:7
  • 2中华人民共和国水利电力部.水利水电工程设计洪水计算规范[M].北京:水利水电出版社,1983..
  • 3水电部成都勘测设计院规划处水文组.水文计算经验汇编,第四集[M].北京:水利水电出版社,1984..
  • 4吴伯贤 侯玉.分形与水文学.2000年中国水文展望全国青年学术讨论会论文集[M].南京:河海大学出版社,1991.103-106.
  • 5丁晶 侯玉.随机模型估算分期洪水的初探[J].成都科技大学学报,1988,5:93-98.
  • 6Agrawal R,Mamnila H,Srikant R,et al. Fast Discovery of Association Rules. In:Fayyad M,Piatetshy-Shapiro G,Smyth P,eds. Advances in Knowledge Discovery and Data Mining, Menlo Park,California: AAAI/MIT Press, 1996. 307 ~ 328
  • 7Chen X,Petrounias I. A framework for temporal data mining. In:Quirchmayr G,et al. eds. Proc. Ninth Intl. Conf. on Database and Expert Systems Applications, DEXA' 98, Vienna, Austria, Lecture Notes in Computer Science, 1460. Springer-Verlag, 1998. 796 ~805
  • 8Agrawl R,Strikant R. Mining Sequential Patterns. In: Proc. of the 11th Int' 1 Conf. on Data Engineering, Taipei, Taiwan, IEEE Computer Society Press,March 1995.3~14
  • 9Agrawl R,Strikant R. Mining Sequential Patterns:Generalizations and Performance Improvements. In: Proc. Intl. Conf. on Extending Database Technology. EDBT' 96. Avignon France
  • 10Mannila H, Toivonen H, Verkamo A I. Discovering frequent episodes in sequences. In: Proc. First Intl. Conf. on Knowledge Discovery and Data Mining (KDD-95), Montreal, Quebec, Canada. AAAI Press ,Menlo Park,California. 1995. 210~215

共引文献113

同被引文献167

引证文献16

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部