摘要
根据多聚焦图像的特点提出一种基于清晰度的NSCT图像融合算法。在清晰的区域,低频系数和高频系数全部采用清晰区域的系数,而从清晰到模糊过渡的区域,低频系数则取区域方差值最大,高频子带系数取区域能量值最大。该算法与梯度金字塔算法、小波融合算法和Contourlet融合算法进行比较,实验结果证明该方法融合后的图像与源图像具有最小均方差。
The paper proposes an algorithm based on definition and NSCT in multi-focus image fusion. The coefficient of definition area is still adopted as fusion coefficient. In area from definition to blur, regional variance is adopted in low-frequency image, and maximum local energy is adopted in high-frequents subbands. Experimental results show that the proposed method has smallest mean square error compared with gradient pyramid algorithm, wavelet fusion algorithm and Contourlet fusion algorithm.
出处
《计算机工程》
CAS
CSCD
北大核心
2010年第11期212-214,共3页
Computer Engineering
基金
国家"973"计划基金资助项目(2007CB311006)