期刊文献+

基于扩展CNP的分布式多Agent协同系统 被引量:1

Distributed Multi-Agent Coordination System Based on Extended CNP
下载PDF
导出
摘要 传统合同网协议的投标类型单一,不能准确表达参与任务分配的Agent的意图。结合应用环境的任务抢占机制需求,对合同网协议的投标类型进行适应性扩展,基于扩展合同网协议设计分布式多Agent协同系统,给出Agent程序实现方法、多Agent通信机制设计和协同机制应用实例。该系统具有良好的可扩展性,便于动态引入具有不同功能的Agent,为协同机制的研究提供了基础平台。 The bid type of traditional Contract Net Protocol(CNP) is too simplex to express the intention of Agent participating in task allocation precisely. Considering the requirements of task preemption mechanism in the target environment, extension to CNP is made, and the distributed multi-Agent coordination system is designed based on the extended CNP. The methods of Agent realization, design of multi-Agent communication mechanism and application of coordination mechanism are given. The system has good extension capability for Agents with different function to be imported dynamically and easily. It provides a foundation platform for the research activities on coordination mechanism.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第11期262-264,共3页 Computer Engineering
关键词 智能体 多AGENT系统 协同 合同网协议 任务分配 Agent Multi-Agent System(MAS) coordination Contract Net Protocol(CNP) task allocation
  • 相关文献

参考文献5

二级参考文献14

  • 1Samuel A L. Some Studies in Machine Learning Using the Crame of Checkers[J]. IBM Journal of Research and Development, 2000,44( 1/2): 206-226.
  • 2Pollack J, Blair A, Land M. Cooperative of a Backgammon Player[C].Proceedings of the Fifth Artificial Life Conference, Nara, Japan. MIT Press, 1996.
  • 3Juille H, Pollack J B. Co-evolving Intertwined Spirals[C]. Proceedings of the Fifth Annual Conference on Evolutionary Programming, MIT Press, 1996: 461-467.
  • 4Angeline P J, Pollack J B. Competitive Environments Evolve Better Solutions for Complex Tasks[C]. Proceedings of the 5^th International Conference on Genetic Algorithms(GA-93). Morgan Kaufmann, 1993:264-270.
  • 5Rosin C D, Belew R K. Methods for Competitive Co-evolution:Finding Opponents Worth Beating[C]. Proceedings of the Sixth International Conference on Genetic Algorithms. Morgan Kaufmann,1995: 373-380.
  • 6Miconi T. When Evolving Populations is Better than Coevolving Individuals: the Blind Mice Problem[C]. Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico. MIT Press, 2003.
  • 7Potter M A, Jong, K A D. Cooperative Co-evolution: An Architecture for Evolving Coadapted Subcomponents[J]. Evolutionary Computation, 2000, 8(1).
  • 8Cao Y U, Fukunaga A S, Kahng A B. Cooperative Mobile Robotics:Antecedents and Directions[J]. Autonomous Robots, 1997, 4(1): 7-23.
  • 9Charles M Macal, J Michael. North. Tutorial on agent-based modeling and simulation[J]. WSC'05,2005.
  • 10M J North and C M Macal. Escaping the accidents of history: an o- verview of artificial life modeling with Repast [C].Artificial Life Models in Software, Eds.A.Adamatzky and M. Komosinski, Springer-Verlag: Dordrecht, Netherlands. 2005.

共引文献6

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部