期刊文献+

三层外空气孔对光子晶体光纤非线性和色散的影响 被引量:3

Influence of the Outer Air-holes beyond the Third Ring on the Nonlinearity and Dispersion of Photonic Crystal Fibers
下载PDF
导出
摘要 在以1550nm为中心的宽带波长范围内设计了一种宽带低非线性色散补偿光子晶体光纤,采用矢量光束传输法数值模拟了包层中空气孔层数、空气孔直径和空气孔节距对于其色散和非线性特性的影响。计算结果表明,内六层空气孔对于其色散与非线性特性有较强影响。通过优化调节第四到六层空气孔的直径和空气孔节距,设计了在以1550nm为中心的100nm带宽波长范围内对相当于自身长度190倍的普通单模传输光纤进行色散补偿的光子晶体光纤(色散补偿偏移率保持在0.5%以内),在此宽带波长范围内保持非线性系数低于3W-1?km-1。 A photonic crystal fiber for broadband dispersion-compensating with low nonlinearity in a wide wavelength range centered at 1 550 nm is designed,and the effects of the number of air-hole rings,the air-hole diameter and the lattice pitch on both dispersive and nonlinear properties are numerically described by using the vectorial beam propagation method.The results indicate that the inner six air-hole rings have stronger impact on the dispersive and the nonlinear properties.By optimizing and adjusting the diameters of the inner 4th to 6th air-holes and the lattice pitch,the proposed photonic crystal fiber can compensate(to within 0.5%) the dispersion of 190 times of its length of standard single mode transmission fiber over the entire 100nm band centered at 1 550 nm,while also can remain the nonlinear coefficient lower than 3 W-1?km-1 over the wide wavelength range.
出处 《光电工程》 CAS CSCD 北大核心 2010年第6期96-102,共7页 Opto-Electronic Engineering
基金 甘肃省自然科学基金项目(3ZS062-B25-036) 兰州理工大学博士启动基金 优秀青年教师培养计划资助项目
关键词 光纤光学 光子晶体光纤 矢量光束传输法 色散补偿 光纤通信 fiber optics photonic crystal fiber vectorial beam propagation method dispersion-compensating optical fiber communication
  • 相关文献

参考文献17

  • 1Grtiner-Nielsen L, Wandel M, Kristensen P, et al. Dispersion-compensating fibers [J]. Journal of Lightwave Technology (S0733-8724), 2005, 23(11): 3566-3579.
  • 2Liu Yanming, Joe Antos A. Single-mode dispersion-shifted fibers with effective area larger than 80pm2 and good bending performance [C]//the 21st European Conference on Optical Communication Technology(ECOC1996), Norway, 1996: 333-336.
  • 3Roberts P J, Mangan B J, Sabert H, et al. Control of dispersion in photonic crystal fibers [J]. Journal of Optical Fiber Communications Reports(S1867-3007), 2005, 2(5): 435-461.
  • 4Koshiba M, Saitoh K. Structural dependence of effective area and mode field diameter for holey fibers [J]. Optics Express (S1094-4087), 2003, 11(15): 1746-1756.
  • 5Mortensen N A. Effective area ofphotonic crystal fibers [J]. Optics Express(S1094-4087), 2002, 10(7): 341-348.
  • 6Cucinotta A, Selleri S, Vincetti L, et al. Holey fiber analysis through the finite-element method [J]. IEEE Photonics TechnologyLetters(S1041-1135), 2002, 14(11): 1530-1532.
  • 7Mangan B J, Couny F, Barr L, et al. Slope-matched dispersion-compensating photonic crystal fibre [C]// Conference on Lasers and Electro-Optics, 2004. (CLEO), San Francisco, California, May 16-24, 2004, 2: 1069-1070.
  • 8Birks T A, Mogilevstev D, Knight J C, et al. Dispersion compensation using single-material fibers [J]. IEEE Photonies Teehnology Letters(S1041-1135), 1999, 11(6): 674-676.
  • 9Shen L P, Huang W P, Chen G X, et al. Design and optimization of photonic crystal fibers for broad-band dispersion compensation [J]. IEEE Photonies Technology Letters(S 1041-1135), 2003, 15(4): 540-542.
  • 10Poli F, Cucinotta A, Fuochi M, et al. Characterization ofmicrostructured optical fibers for wideband dispersion compensation [J]. Journal of the Optical Society of America A(S 1084-7529), 2003, 20(10): 1958-1962.

同被引文献19

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部