期刊文献+

基于局部峰值方差检测的改进DUET算法研究 被引量:3

Improved DUET algorithm based on subarea peak variance detecting
下载PDF
导出
摘要 DUET(degenerate unmixing estimation technique)算法是一种典型的盲源分离方法,而混合参数估计是DUET算法的重要组成部分,其估计精度直接影响到源信号的分离效果。针对混合参数估计,提出了一种基于局部峰值方差检测的改进DUET算法。首先利用DUET算法模型中混合参数创建直方图,根据直方图上信号占优的特点,把直方图划分成若干个子区域,计算每个子区域的方差,然后利用排序算法检测出最大的P个方差(P为源信号的个数),这P个方差所在子区域峰值的横纵坐标即是混合参数。此算法改进了原有DUET算法中混合参数估计的智能性和精度,通过语音分离的仿真实验和实录实验表明,此算法简单有效,并且估计源信号的精度有了提高。 The DUET(degenerate unmixing estimation technique)algorithm is a typical blind source separation method,while the estimation of mixing parameters is an important part of DUET algorithm,which has a directly impact on the separation result of source signals.According to the parameter estimation,an improved DUET algorithm based on subarea peak variance detection is proposed in this paper.First,the histogram is created via the mixing parameters,and the histogram is partitioned into some subareas according to the character of sources dominating.Then each subarea's variance is calculated,subsequently the maximum P variances are found using the sorting algorithm,in which P is the number of source signals.The P peaks' coordinates represent the mixing parameters.The proposed algorithm improves the intelligence and accuracy of the original DUET in mixing parameter estimate.From the experimental results on audio mixtures,the proposed algorithm is simple and highly effective,and the accuracy of the estimated source signals is higher than that of the original DUET algorithm.
出处 《电子测量与仪器学报》 CSCD 2010年第5期437-442,共6页 Journal of Electronic Measurement and Instrumentation
关键词 盲源分离 DUET算法 K-MEANS聚类 局部峰值方差检测 blind source separation:DUET algorithm:K-means clustering:subarea peak variance detecting
  • 相关文献

参考文献15

  • 1LI Y Q,CICHOCKI A,AMARI S.Analysis of sparse representation and blind source separation[J].Neural Computation,2004,16(6):1193-1234.
  • 2孙世军,彭承琳,侯文生,郑小林,方祯云.基于时间序列变分贝叶斯理论的信号盲源分离[J].仪器仪表学报,2009,30(8):1571-1576. 被引量:8
  • 3付宁,彭喜元,张毅刚.具有延迟的未知数目稀疏源盲混合信道估计方法[J].仪器仪表学报,2009,30(8):1565-1570. 被引量:1
  • 4付宁,彭喜元.基于改进l_1范数最小化组合算法的欠定盲源分离[J].电子测量与仪器学报,2009,23(7):1-5. 被引量:7
  • 5JOURJINE A,RICKARD S,YILMAZ ?.Blind separa-tion of disjoint orthogonal signal:Demixing N sources from 2 mixtures[C].Istanbul:ICASSP2000,2000:2985-2988.
  • 6YILMAZ O,RICKARD S.Blind separation of speech mixtures via time-frequency masking[J].IEEE Trans.on Signal Processing,2004,52(7):1830-1847.
  • 7RICKARD S,BALAN R,ROSCA J.Real-time time-frequency based blind source separation[C].San Diego:Int.Workshop Independent Component Anal.Blind Source Separation,2001:651-656.
  • 8MELIA T,RICKARD S.Underdetermined blind source separation in echoic environments using DESPRIT[J].EURASIP Journal on Advances in Signal Processing,2007.
  • 9MELIA T,RICKARD S,FEARON C.Histogram-based blind source separation of more sources than sensors us-ing a DUET-ESPRIT technique[C].European Signal Processing Conference (EU-SIPCO'05),2005:5-8.
  • 10SUKEGAWA R,UCHIDA S,NAGAI T.Blind source separation using correlation at neighboring frequencies[C].Tottoti 2006 International Symposium on Intelligent Sig-nal Processing and Communication Systems,2006:451-454.

二级参考文献28

  • 1HE Zhaoshui XIE Shengli FU Yu.Sparse representation and blind source separation of ill-posed mixtures[J].Science in China(Series F),2006,49(5):639-652. 被引量:24
  • 2LEE T-W, LEWICKI M S, GIROLAMI M, et al. Blind source separation of more sources than mixtures using overcomplete representations[J]. IEEE Signal Process Letter, 1999,6(4):87-90.
  • 3O'GRADY P D, PEARLMUTTER B A. Hard-LOST: Modified k-means for oriented lines[A]. Proceedings of the Irish Signals and Systems Conference[C]. Belfast, Ireland, 2004:247-252.
  • 4YILMAZ O, RICKARD S. Blind separation of speech mixtures via time-frequency masking[J]. IEEE Transac- tions on Signal Processing, 2004,52(7): 1830-1847.
  • 5BOFILL E Underdetermined blind separation of delayed sound sources in the frequency domain[J]. Neurocomputing, 2003,55(3-4):627-641.
  • 6SAAB R, YILMAZ O, MCKEOWN, et al. Underdetermined anechoic blind source separation via lq-basis- pursuit with q<1 [J]. IEEE Transactions on Signal Processing. 2007,55(8):4004-4017.
  • 7ARAKI S, SAWADA H, MUKAI R. Underdetermined blind sparse source separation for arbitrarily arranged mul- tiple sensors[J]. Signal Processing, 2007, 87(8): 1833- 1847.
  • 8SHINDO H, HIRAI Y. Blind source separation by a geometrical method[A]. Proceedings of the International Joint Conference on Neural Networks[C]. Honolulu, HI, USA, 2002:1108-1114.
  • 9PATERLINIA S, KRINKB T. Differential evolution and particle swarm optimisation in partitional clustering[J].Computational Statistics & Data Analysis. 2006, 50(5)1220-1247.
  • 10PAKHIRA M. K, BANDYOPADHYAY S, MAULIK U. Validity index for crisp and fuzzy clusters[J]. Pattern Recognition, 2004,37(3):487-501.

共引文献12

同被引文献19

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部