期刊文献+

粒子群优化算法研究 被引量:8

Research on Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的,用于解决优化问题的一类新兴的随机优化算法。本文首先介绍PSO算法的基本原理和工作机制;然后介绍粒子群优化算法的优化策略,包括提高收敛速度﹑算法离散化﹑提高总群多样性;最后对其将来的发展进行了展望。 Particle swarm optimization algorithm is put forward according to the simulation of migration of bird flight their food-searching and the group model,and is a novel stochastic optimization algorithm which can use to solve optimization problems. The models of bird flocking and swarm actions are firstly introduced,and the fundamentals characteristics and the working mechanisms of PSO algorithm are also analyzed. Then this paper introduces the optimization strategy of particle swarm optimization including improve the convergence rate,discrete algorithms,improve overall group diversity. Finally,some suggestion on future trends and existing problems related to PSO algorithm are discussed and concluded.
作者 李欣然
出处 《计算机与现代化》 2010年第6期6-8,12,共4页 Computer and Modernization
关键词 粒子群优化算法 群智能 优化 particle swarm optimization algorithm swarm intelligence optimization
  • 相关文献

参考文献14

  • 1Kennedy J, Eberhart R C. Particle swarm optimization [ C ]// Proceedings of IEEE International Conference on nem'al networks. Perth ,Australia, 1995 : 1942-1948.
  • 2Fukuyama Y. Fundamentals of particle swarm techniques [ C]//Modem Heuristic Optimization Techniques with Applications to Power Systems. IEEE Power Engineering Society ,2002:45-51.
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization[ C]//Proceedings of the 2001 Congress on Evolutionary Computation. Piscataway, N J ,2001 : 101-106.
  • 4肖高超,王强,常棠棠,王晓霄,李立礼.一种动态惯性权重的粒子群优化算法[J].广西师范大学学报(自然科学版),2008,26(3):161-164. 被引量:3
  • 5Clerc M. The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization[ C ]//Proceedings of International Conference on Evolutionary Computation. Washington, USA, 1999 : 1951-1957.
  • 6Bell W H,Cameron D G,Capozza L,et al. Optorsim:A grid simulator for studying dynamic data replication strategies [ J ]. International Journal of High Performance Computing Applications,2003,17 ( 4 ) :403-416.
  • 7Kennedy J, Eberhart R C. A discrete binary version of the particle swarm optimization algorithm[ C]//Proceedings of International Conference on System, Man, and Cybernetics. Orlando, FL, USA, 1997:4104-4109.
  • 8Yoshida H, Fukuama Y, Takayama S. A particle swarm optimization for reactive power and voltage control in electric power systems considering voltage security assessment[ J]. IEEE Trans. on Power System ,2001,15 (4) : 1232-1239.
  • 9Clerc M. Discrete particle swarm optimization illustrated by the traveling salesman problem [ C ]//Proceedings of International Conference on Evolutionary Computation. Heidelberg, Germany ,2000 : 853-859.
  • 10Krink T, Vesterstrom J S, Riget J. Particle swarm optimization with spatial particle extension[ C ]//Proceedings of International Conference on Evolutionary Computation. Honolulu, USA ,2002 : 1474-1497.

二级参考文献7

  • 1武志峰,杨蓓.一种改进的粒子群优化算法[J].郑州大学学报(理学版),2007,39(3):109-112. 被引量:7
  • 2瞿高峰,陈淑燕.粒子群优化算法在交通信号配时中的应用[J].广西师范大学学报(自然科学版),2006,24(4):255-258. 被引量:9
  • 3KENNEDY J,EBERHART R. Particle swarm optimization[C]//Proceedings of 1995 IEEE International Conference on Neural Networks. Washington DC:IEEE Press, 1995 : 1942-1948.
  • 4JIANG Yan,HU Tie-song,HUANG Chong-chao,et al. An improved particle swarm optimization algorithm [J]. Applied Mathematics and Computation, 2007,193 (1) .. 231-239.
  • 5YANG Xue-ming,YUAN Jin-sha,YUAN Jiang-ye,et al. A modified particle swarm optimizer with dynamic adaptation[J]. Applied Mathematics and Computation,2007,189(2):1205-1213.
  • 6XU Yuan-qing,CHEN Xiang-guang,WANG Li. Original multi-objective optimization algorithm[J]. Journal of Guangxi Normal Uniersity :Natural Science Edition, 2006,24 (4) : 131-134.
  • 7曹建潮,介婧,崔志华.微粒群算法[M].北京:科学出版社,2004.

共引文献2

同被引文献97

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部