期刊文献+

基于张量局部和全局信息的人脸识别算法 被引量:4

New face recognition algorithm using tensor local and global information
下载PDF
导出
摘要 现有的基于张量子空间的流形学习算法能够很好地利用图像的空间几何结构,但对流形的局部和全局信息利用得不够充分,为此提出了一种新的张量子空间学习算法:基于局部和全局信息的张量子空间投影.新算法充分利用人脸图像数据的局部流形结构(即类内非线性流形结构)和人脸图像数据的全局信息,使数据在投影空间中的类间分离度最大,通过迭代和投影得到最优张量子空间.在标准人脸数据库上的实验表明,新算法识别率高于张量线性判别分析(TLDA)、张量临界Fisher分析(TMFA)、张量局部判别投影(TLDP)、张量子空间(TSA)算法. The current algorithms based on tensor subspace manifold learning can utilize the intrinsic geometrical structure of images. But the local information and global information are not utilized sufficiently in current algorithms. A novel tensor suhspace learning algorithm is proposed in this paper which is named tensor local and global projection. The local nonlinear structure of the data manifold that is the local information of the data can be preserved in the algorithm, and at the same time, the global information of data is utilized. So the discriminant between classes of data in low dimension subspace can be maximized. And the optimal tensor subspace can be obtained by iteratively computing the generalized eigenvectors and projection. The experiments on the standard face database demonstrate that the right recognition rate of the novel algorithm is higher than the recognition rate of the four algorithms named TLDA, TMFA, TLDP and TSA.
作者 温浩 孙蕾
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第3期429-435,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(70373046)
关键词 人脸识别 降维 流形学习 张量 子空间 face recognition dimensional reduction manifold learning tensor subspace
  • 相关文献

参考文献10

  • 1Turk M, Pentland A P. Face Recognition Using Eigenfaces [C]//IEEE Conference on Computer Vision and Pattern Recognition. Maui: IEEE, 1991: 586-591.
  • 2刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117
  • 3Lee K C, Ho J, Yang M H. Video-Based Face Recognition Using Probabilistic Appearance Manifolds[C]//Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition IEEE. Madison: IEEE, 2003 : 313-320.
  • 4Minkook C, Hyeyoung P. Nonlinear Dimension Reduction Using ISOMap Based on Class Information [C]//IEEE International Joint Conference on Neural Networks, 2009(IJCNN'2009). Atlanta: IEEE, 2009: 566-570.
  • 5Teoh A B J, Han Pangying. Face Recognition Based on Neighbourhood Discriminant Preserving Embedding[C]//IEEE Conference on 10^th Control, Automation, Robotics and Vision. Hanoi: IEEE, 2008: 428-433.
  • 6Belkin M, Niyogi P. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering [DB/OL]. [2007-12- 25]. http://books.nips. cc/nips18. html.
  • 7He Xiaofei, Yan Shuicheng, Hu Y X. Face Recognition Using Laplacianface[J]. IEEE Trans on PAMI, 2005, 27(3): 328-340.
  • 8He Xiaofei, Cai Deng, Niyogi P. Tensor Subspace Analysis[EB/OL]. [2007-09-10]. http://books. nips. cc/papers/ files/nips18/NIPS2005_0249. pdf.
  • 9李勇周,罗大庸,刘少强.张量局部判别投影的人脸识别[J].电子学报,2008,36(10):2070-2075. 被引量:2
  • 10Zeng Zhaoxiong, Liu Changping, Huang Lei. Analysis on Two Fisher Methods and a Synthesized Discriminant Projection [C]//IEEE International Conference on 19^th Pattern Recognition(ICPR'08). Tampa: IEEE, 2008: 1-4.

二级参考文献81

  • 1王蕴红,范伟,谭铁牛.融合全局与局部特征的子空间人脸识别算法[J].计算机学报,2005,28(10):1657-1663. 被引量:41
  • 2M Turk, A Pentland. Eigenfaces for recognition[ J ]. Cognitive Neuroscience, 1991,3( 1 ) : 71 - 86.
  • 3P N Belhumeur, J P Hespanha, D J Kriegman. Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Transactions, 1997, PAMI-19(7) :711 - 720.
  • 4X He, S Yan, et al. Face recognition using Laplacianfaces[ J ]. IEEE Transactions,2005, PAMI-27(3) :328 - 340.
  • 5M A O Vasilescu, D Terzopoulos. Multilinear analysis of images ensembles: tensoffaces [ A ]. In Proceedings of European Conference on Computer Vision[ C ]. Berlin: Springer-Verlag, 2002.447- 460.
  • 6J Yang, D Zhang, A Frangi, J Yang. Two-dimensional PCA:a new approach to appearance-based face representation and recognition[ J ]. IEEE transactions, 2004, PAMI-26 ( 1 ) : 131 - 137.
  • 7J Ye, R Janardan, Q Li. Two-dimensional linear discriminant analysis[ OL ]. http://books. nips. cc/nips17. html, 2007-10- 20.
  • 8X He, D Cai, P Nigygi. Tensor subspace analysis[ OL ]. http:// books. nips. cc/nips 18. html, 2007-10-20.
  • 9X He. Locality Preserving Projections [ D ]. Chicago, Illinos: University of Chicago of USA,2005,12.
  • 10S Yan,D Xu,et al. Graph embedding and extensions:a general framework for dirnensionality reduction[ J ]. IEEE Transactions, 2007, PAMI-29( 1 ) : 46 - 51.

共引文献117

同被引文献37

  • 1蔡自兴,李枚毅.多示例学习及其研究现状[J].控制与决策,2004,19(6):607-610. 被引量:12
  • 2刘万春,罗双华,朱玉文,谢世斌.基于聚类分析和支持向量机的布匹瑕疵分类方法[J].北京理工大学学报,2004,24(8):687-690. 被引量:6
  • 3杨晓元,王志刚,王育民.支持向量机在图像隐秘检测中的应用[J].西安电子科技大学学报,2005,32(3):457-459. 被引量:3
  • 4王蕴红,范伟,谭铁牛.融合全局与局部特征的子空间人脸识别算法[J].计算机学报,2005,28(10):1657-1663. 被引量:41
  • 5Viola P,Jones M.Rapid Object Detection Using a Boosted Cascade of Simple Features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPP).Hawaii:IEEE,2001:511-518.
  • 6Intel Corporation.OpenCVLibrary[CP/OL].[2009-01-06].http://sourceforge,net/projects/opencvlibrary.
  • 7Taylor S.Intel Integrated Performance Primitives-How to Optimize Software Applications Using Intel IPP[M].Hillsboro:Intel Press,2004.
  • 8Lai H C,Savvides M,Chen T.Proposed FPGA Hardware Architecture for High Frame Rate (> = 100 fps) Face Detection Using Feature Cascade Classifiers[C]//Proceedings of IEEE International Conference on Biometrics.Crystal City:IEEE,2007:1-6.
  • 9Hiromoto M,Sugano H,Miyamoto R.Partially Parallel Architecture for AdaBoost-Based Detection with Haar-Like Features[J/OL].[2009-01-06].http://ieeexplore.ieee.org/search.
  • 10MacLean W J.An Evaluation of the Suitability of Fpgas for Embedded Vision Systems[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.San Diego:IEEE,2005:131-138.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部