期刊文献+

图像特征匹配中一种快速关键维过滤搜索算法 被引量:4

Key dimension filtering based search algorithm of B+Tree for image feature matching
下载PDF
导出
摘要 为了解决宽基线多图匹配中匹配效率低和匹配精度不高的问题,使用经典的SIFT特征作为描述子,提出一种新的高维特征搜索算法.采用基于距离尺度的相似性度量准则,首先将图像高维特征集合分类,然后为每一个类建立B+Tree索引,最后在KNN(K Nearest Neighbor)搜索阶段应用基于关键维过滤的查找策略,实现高维特征的快速匹配.实验结果表明,与经典的BBF和LSH等KNN搜索算法相比较,关键维过滤搜索算法具有更高的搜索效率和搜索精度,有助于提升宽基线多图匹配性能. In dealing with the issues of low efficiency and low accuracy in multiple wide-based-line image matching, this paper adopts the classical SIFT descriptor, and proposes a novel high dimensional feature search algorithm. This paper follows the distance-based similarity standard, and firstly partitions the image feature set into different classes, then establishes a B+Tree for each class, and finally gives out a key dimension filtering strategy(KDF) in the KNN search step to speed up the high dimensional feature matching. Experimental results show that the proposed algorithm, which can obtain a higher accuracy with a lower time cost than the classical KNN search algorithm such as BBF, LSH and so on, would be a help to improve the capability of multiple wide-based-line image matching.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第3期534-540,共7页 Journal of Xidian University
基金 国家863计划资助项目(2007AA01Z314 2009AA01Z332) 国家自然科学基金资助项目(60873085) "新世纪优秀人才"计划资助项目(NCET-06-0882)
关键词 特征匹配 尺度不变特征变换 K近邻 B+Tree 关键维过滤 图像检索 feature matching SIFT KNN B+Tree key dimension filtering image retrieval
  • 相关文献

参考文献13

  • 1Brown M, Lowe D G. Automatic Panoramic Image Stitching Using Invariant Features [J]. International Journal of Computer Vision, 2007, 1(74) : 59-73.
  • 2Beis J S, Lowe D G. Shape Indexing Using Approximate Nearest-neighbor Search in High-Dimensional Spaces[C]//Proc Conf Computer Vision and Pattern Recognition. Puerto Rico: IEEE Computer Society, 1997: 1000-1006.
  • 3Yao J, Cham W K. Robust Multi-view Feature Matching from Multiple Unordered Views [J]. Pattern Recognition, 2007, 40(11): 3081-3099.
  • 4Lowe D G. Distinctive Image Features from Scale-Invariant Key Points[J]. Int Journal of Computer Vision, 2004, 60 (2) : 91-110.
  • 5Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 6Mikolajczyk K, Matas J. Improving Descriptors for Fast Tree Matching by Optimal Linear Projection[C]//Proc ICCV. Rio de Janeiro: IEEE, 2007: 1-8.
  • 7Nene S A, Nayar S K. A Simple Algorithm for Nearest Neighbor Search in High Dimensions[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997 (19) 9:989-1003.
  • 8Jagadish H V, Ooi B C, Tan K L, et al. iDistance: an Adaptive B+2tree Based Indexing Method for Nearest Neighbor Search [J]. ACM Trans on Data Base Systems, 2005, 30(1) : 364-397.
  • 9Gionis A, Indyky P, Motwaniz R. Similarity Search in High Dimensions via Hashing[C]//Proc VLDB. Edinburgh: Morgan Kaufmann Publishers, 1999 : 518-529.
  • 10Yang Heng, Wang Qing, He Zhoucan. Randomized Sub-vectors Hashing for High-dimensional Image Feature Matching [C]//ACM MM. Vancouver: ACM, 2008: 705-708.

同被引文献43

  • 1冈萨雷斯.数字图像处理[M].第二版,北京:电子工业出版社,2003:460-521.
  • 2Lowe D G. Distinctive image features from scale invariant keypoints [ J ]. Int. Journal of Computer Vision, 2004,60 ( 2 ) : 91 - 110.
  • 3Bay H, Tuytelaars T, Van Gool L. SURF:Speeded Up Robust Features[J]. Int. Journal of Computer Vision and Image Understanding,2008,110 ( 3 ) :346-359.
  • 4Mikolajczyk K, Schmid C. A performance evaluation of local descrlptors[J]. IEEE transactions on pattern analysis and machine intelligence ,2005,27(10): 1615-1630.
  • 5Ke Y, Sukthankar R. PCA-sift: A more distinctive representation for local image descriptors [ C ]//Proc. CVPR. [ s. l. ] :[s. n. ] ,2004:506-513.
  • 6Beis J S, Lowe D G. Shape Indexing Using Approximate Nearest Neighbor Search in High Dimensional Spaces [ C ]//Proc Conf Computer Vision and Pattern Recognition. Puerto Rico : IEEE Computer Society, 1997 : 1000-1006.
  • 7Nene S A,Nayar S K. A Simple Algorithm for Nearest Neighbor Search in High Dimensions[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(9) :989-1003.
  • 8Junfang Guo,Yanyun Zhao,Anni Cai.A Reliable Method For Paper Currency Recognition Based On LBP[C]//Proceedings of IC-NIDC2010,2010,10:359-363.
  • 9Chin-Chen Chang,Tai-Xing Yu,Hsuan-Yen Yen.Paper Currency Verification With Support Vector Machines.Third International EEE Conference on Signal-Image Technologies and Internet-Based System,2007,146:860-865.
  • 10Fumiaki Takeda,Sigeru Omatu.High Speed Paper Currency Recognition by Neural Networks[J].IEEE TRANSACTIONS ON NEURAL NETWORKS,1995,6(1):73-77.

引证文献4

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部