期刊文献+

基于蚁群算法和互信息进行非线性盲源信号分离

Application of Ant Colony Algorithm and Mutual Information in Nonlinear Blind Source Separation
下载PDF
导出
摘要 针对在非线性混叠盲源分离中代价函数往往具有许多局部最优解,而求解其全局最优解非常困难的问题,这里提出一种基于蚁群算法进行非线性盲源信号分离的方法.该方法用高阶奇数多项式拟合非线性混合函数,以分离信号的互信息作为代价函数.并对非线性混合信号进行了仿真研究.由此方法得到的分离信号和源信号的相似系数都在98%以上,仿真实验结果表明该方法能够对非线性盲源信号进行很好地分离. In nonlinear blind source separation,usually it is very difficulty to find the global optimal values of cost functions due to the existence of many local optimal values.In order to overcome the disadvantages mentioned above,the method of nonlinear blind source separation based on ant colony algorithm is proposed in this paper.The high-order odd polynomial function is used to fit the nonlinear transfer function in this method;the mutual information of separation signals is used as cost function of ant colony algorithm.In simulation experiment,nonlinear mixed signals are successfully separated by this method.The similar coefficients of separation signals obtained by this algorithm and source signals are higher than 98%.The simulation experiment results have shown that this method can well solve the problem of nonlinear blind source separation.
出处 《辽宁大学学报(自然科学版)》 CAS 2010年第2期97-100,共4页 Journal of Liaoning University:Natural Sciences Edition
基金 教育部高等学校青年骨干教师资助项目 华北电力大学电站设备状态监测与控制教育部重点实验室开放基金资助项目(2008-010)
关键词 非线性混合物 盲源信号分离 蚁群算法 互信息 nonlinear mixture blind source separation ant colony algorithm mutual information
  • 相关文献

参考文献11

  • 1C.Jutten,J.Herault.Blind separation of sources[J].Signal Processing,1991,24(1):1-10.
  • 2M.Haritopoulos,H.Yin,N.Allison.Image denoising using self-organizing map-based nonlinear independent component analysis[J].Neural Networks,2002,15(8-9):1085-1098.
  • 3G.Burel.Blind separation of sourees:a nonlinear neural algorithm[J].Neural Networks,1992,5(6):937-947.
  • 4W.Q.Li,H.B.Zhang,F.Zhao.Independent Component Analysis Using Multilayer Networks[J].IEEE Signal Processing Letters,2007,14(11):856-859.
  • 5A.Taleband C.Jutten.Source Separation in Post-Nonlinear Mixtures[J].IEEE Trans.Signal Processing,1999,47(10):2807-2820.
  • 6Y.Tan,J.Wang.Nonlinear Blind Source Separation Using Higher Order Statistics and a Genetic Algorithm[J].IEEE Trans.Evolutionary Computation,2001,5(6):600-612.
  • 7尉宇,刘振兴,李宁,孙德宝.改进的粒子群算法及其非线性盲源分离[J].系统工程与电子技术,2006,28(1):138-142. 被引量:6
  • 8张文爱,刘俊豪.基于粒子群算法的盲源分离算法[J].太原理工大学学报,2006,37(2):169-172. 被引量:7
  • 9汪镭,吴启迪.蚁群算法在系统辨识中的应用[J].自动化学报,2003,29(1):102-109. 被引量:40
  • 10唐超礼,黄宜庆,黄友锐.多模态函数优化的小生境蚁群算法及其仿真分析[J].工业控制计算机,2008,21(6):57-57. 被引量:2

二级参考文献30

  • 1吕佳,熊忠阳.面向多模态函数优化的混沌免疫网络算法研究[J].计算机应用,2006,26(2):456-458. 被引量:4
  • 2袁丽华,黎明,杨小芹,周琳霞.基于小生境遗传算法的多峰函数优化[J].南昌航空工业学院学报,2005,19(4):1-4. 被引量:7
  • 3王晓兰,李恒杰.多模态函数优化的小生境克隆选择算法[J].甘肃科学学报,2006,18(3):64-68. 被引量:8
  • 4孙即祥.现代模式识别[M].长沙:国防科技大学出版社,2003..
  • 5YANG H H,AMARI S,CICHOCHI A.Information theoretic approach to blind separation non-linear mixture[J].Signal Processing,1998,64(3):291-300.
  • 6TABLE A,JUTTEN C.Source separation in post nonlinear mixtures:an entropy-based algorithm[C]//Proc.of ICASSP.Seattle,Washington,1998.2089-2092.
  • 7TUGNAIT JITENDRA K.Adaptive blind separation of convolutive mixtures of indendent linear signals[J].Signal Processing,1999,73(7):139-152.
  • 8BUREL G.Blind separation of sources:a nonlinear neural algorithm[J].Neural Network,1992,5(6):937-947.
  • 9PAJUNEN P,HYVARINEN A,KARHUNEN J.Nonlinear blind souce separation by self-organizing maps[M]//In Progress in Neural Information Processing.New York:Springer-Verlag,1996.1207-1210.
  • 10KENNEDY J,EBERHART R C.Particle swarm optimization[C]//Proc.of IEEE International Conference on Neural Networks,IV[C].Piscataway,NJ:IEEE Service Center,1995.1942-1948.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部