变分不等式中带不等式约束的新交替方向法
摘要
交替方向法将变分不等式V(IΩ,F)分解成一系列低维的子问题,当子问题能有效解决时这是一种很好的方法.本文针对一类带不等式约束变分不等式提出了一种新的交替方向法,并证明了其收敛性.
出处
《乐山师范学院学报》
2010年第5期21-23,共3页
Journal of Leshan Normal University
基金
西华师范大学科研启动基金资助项目(08B075)
参考文献4
-
1胡伯霞.一类非对称单调变分不等式的自适应交替方向法[J].衡阳师范学院学报,2008,29(3):16-20. 被引量:1
-
2周叔子,胡伯霞.一类非对称变分不等式的非精确交替方向法[J].湖南大学学报(自然科学版),2007,34(4):78-80. 被引量:3
-
3胡伯霞.一类非对称单调变分不等式的交替方向法[J].数学理论与应用,2005,25(3):42-44. 被引量:3
-
4Bingsheng He,Li-Zhi Liao,Deren Han,Hai Yang. A new inexact alternating directions method for monotone variational inequalities[J] 2002,Mathematical Programming(1):103~118
二级参考文献15
-
1HARKER P T,PANG J S.Finite-dimensional variational inequality and nonlinear complementarity problems:a survery of theory,algorithms and applications[J].Math Progr,1990,48(2):161-220.
-
2EAVES B C.On the basic theorem of complementarity[J].Math Progr,1971,1(1):68-75.
-
3WANG S L,YANG H,HE B S.Solving a class of asymmetric variational inequalities by a new alternating direction method[J].Comp and Math with Appl,2000,40(8):927-937.
-
4HE B S.Inexact implicit methods for monotone general variational inequalities[J].Math Progr,1999,86(1):199-217.
-
5P. T. HARKER, J. S. PANG. Finite-dimensional variational inequality and nonlinear complementarity problems: A survery of theory, algorithms and applications[J]. Math. Progr. , 1990, 48(2) : 161-220.
-
6B. C. EAVES. On the basic theorem of complementarity[J]. Math. Progr. , 1983, 26:40-47.
-
7S. L. WANG, H. YANG, B. S. HE. Solving a class of asymmetric variational inequalities by a new alternating direction method[J]. Comp. and Math. with Appl. , 2000, 40:927-937.
-
8B. S. HE. Inexact implicit methods for monotone general variational inequalities[J]. Math. Progr. , 1999, 86:199-217.
-
9B. S. HE, L. Z. LIAO, D. HAN et al. A new inexact alternating directions method for monotone variational inequalities [J]. Math. Program., 2002, 92: 103-118.
-
10L. Z. LIAO, S. L. WANG. A self-adaptive projection and contraction method for monotone symmetric linear variational inequalities[J]. Comput. Math. Appl. , 2002, 43: 41-78.