期刊文献+

变分不等式中带不等式约束的新交替方向法

下载PDF
导出
摘要 交替方向法将变分不等式V(IΩ,F)分解成一系列低维的子问题,当子问题能有效解决时这是一种很好的方法.本文针对一类带不等式约束变分不等式提出了一种新的交替方向法,并证明了其收敛性.
作者 刘建军
出处 《乐山师范学院学报》 2010年第5期21-23,共3页 Journal of Leshan Normal University
基金 西华师范大学科研启动基金资助项目(08B075)
  • 相关文献

参考文献4

二级参考文献15

  • 1HARKER P T,PANG J S.Finite-dimensional variational inequality and nonlinear complementarity problems:a survery of theory,algorithms and applications[J].Math Progr,1990,48(2):161-220.
  • 2EAVES B C.On the basic theorem of complementarity[J].Math Progr,1971,1(1):68-75.
  • 3WANG S L,YANG H,HE B S.Solving a class of asymmetric variational inequalities by a new alternating direction method[J].Comp and Math with Appl,2000,40(8):927-937.
  • 4HE B S.Inexact implicit methods for monotone general variational inequalities[J].Math Progr,1999,86(1):199-217.
  • 5P. T. HARKER, J. S. PANG. Finite-dimensional variational inequality and nonlinear complementarity problems: A survery of theory, algorithms and applications[J]. Math. Progr. , 1990, 48(2) : 161-220.
  • 6B. C. EAVES. On the basic theorem of complementarity[J]. Math. Progr. , 1983, 26:40-47.
  • 7S. L. WANG, H. YANG, B. S. HE. Solving a class of asymmetric variational inequalities by a new alternating direction method[J]. Comp. and Math. with Appl. , 2000, 40:927-937.
  • 8B. S. HE. Inexact implicit methods for monotone general variational inequalities[J]. Math. Progr. , 1999, 86:199-217.
  • 9B. S. HE, L. Z. LIAO, D. HAN et al. A new inexact alternating directions method for monotone variational inequalities [J]. Math. Program., 2002, 92: 103-118.
  • 10L. Z. LIAO, S. L. WANG. A self-adaptive projection and contraction method for monotone symmetric linear variational inequalities[J]. Comput. Math. Appl. , 2002, 43: 41-78.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部