期刊文献+

无网格法求解精度影响因素研究 被引量:1

Factors affecting computational precison of element-free Galerkin method
下载PDF
导出
摘要 基于移动最小二乘法的无网格法的计算精度影响因素很多,文中通过分析经典的Timoshenko悬臂梁问题,定义了一个能量范数作为误差指标,用Matlab程序开发了无网格法计算程序,对离散节点的排布方式及其分布密度、权函数的选取和权函数影响域的大小这几种主要求解精度的影响因素进行了计算分析,考察了不同情况下无网格法的计算精度及效率,得出了一些有益的结论. Computational precision of MLS-based EFGM is affected by many factors.This paper analyzed the Timoshenko cantilever beam problem and defined an energy norm as error index.Simultaneously,the paper developed element-free computational program based on Matlab.Furthermore,the authors analyzed the main factors including the nodal distribution,selection of the weight functions,the compact support′s size.Also,the authors investigated the computational precision and efficiency of EFGM under different parameter setting.The above analysis gives some useful conclusions.
作者 王明强 沈智
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2010年第2期147-151,共5页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词 无网格伽辽金法 权函数 支持域 计算精度 element-free Galerkin method weight function compact support computational precision
  • 相关文献

参考文献7

  • 1Belytschko T,Lu Y Y,Gu L.Element-free Galerkin method[J].International Journal for Numerical Methods in Engineering,1994,37:229-256.
  • 2Atluri S N,Sladek J,Sladek V,et al.The local boundary integral equation (LBIE) and its meshless implementation for linear elasticity[J].Computational Mechanics,2000,25(2/3):180-198.
  • 3Zuppa C.Good quality point sets and error estimates for moving least square approximations[J].Applied Numerical Mathematics,2003,47:575-585.
  • 4王大志,任钧国.无网格法中的基向量研究[J].华南理工大学学报(自然科学版),2003,31(z1):98-100. 被引量:1
  • 5Liu G R,Gu Y T.无网格法理论及程序设计[M].山东济南:山东大学出版社,2007.
  • 6Timoshenko S P,Goodier J N.Theory of elasticity[M].3rd edition.Singapore:McGrawHill,1970.
  • 7娄路亮,曾攀.影响无网格方法求解精度的因素分析[J].计算力学学报,2003,20(3):313-319. 被引量:18

二级参考文献16

  • 1杨津光.开式压力机机身主截面的优化设计及八节点等参元计算[A]..三省一市第二届锻压年会论文集[C].,1985..
  • 2[4]Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [ J]. Int J Numer mech Engng, 1994, 37:229 - 256.
  • 3[5]Lu Y Y. A new implementation of the element free Galerkin method [ J ]. Comput Methods Appl Mech Engrg, 1994, 113: 397 - 414.
  • 4Nayroles B, et al. Generalizing the finite element method: diffuse approximation and diffuse elements.J]. Comput Mech, 1992,10:307-318.
  • 5Belytsehko T, Lu Y Y, Gu L. Element-free Galerkin method [J]. Int J Numer Methodds Engrg. 1994,37 : 229-256.
  • 6Onate E, Idelsohn S, Zienkiewicz 0 C. Finite point method in computational mechanics [J]. Int J Numer Meth Engng, 1996,22(39):3839-3866.
  • 7Atluri S N, Sladek J, Sladek V. The Local Boundary Integral Equation (LBIE) and its meshless imple-mentation for linear elasticity [J]. Comput Mech 2000,25: 180-198.
  • 8Beissel S, Belytsehko T. Nodal integration of the element-free Galerkin method [J]. Comput Methods Appl Mech Engrg, 1996,139:205-230.
  • 9Krysl P, Belytschko T. Element-free Galerkin method:convergence of the continuous and discontinuous shape functions [J]. Comput Methods Appl Mech Engrg, 1997,148 (3-4) : 257-277.
  • 10Timoshenko S P, Goodier J N. Theory of elasticity[M]. McGraw-Hall, New York,1970.

共引文献17

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部