摘要
基于移动最小二乘法的无网格法的计算精度影响因素很多,文中通过分析经典的Timoshenko悬臂梁问题,定义了一个能量范数作为误差指标,用Matlab程序开发了无网格法计算程序,对离散节点的排布方式及其分布密度、权函数的选取和权函数影响域的大小这几种主要求解精度的影响因素进行了计算分析,考察了不同情况下无网格法的计算精度及效率,得出了一些有益的结论.
Computational precision of MLS-based EFGM is affected by many factors.This paper analyzed the Timoshenko cantilever beam problem and defined an energy norm as error index.Simultaneously,the paper developed element-free computational program based on Matlab.Furthermore,the authors analyzed the main factors including the nodal distribution,selection of the weight functions,the compact support′s size.Also,the authors investigated the computational precision and efficiency of EFGM under different parameter setting.The above analysis gives some useful conclusions.
出处
《江苏科技大学学报(自然科学版)》
CAS
北大核心
2010年第2期147-151,共5页
Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词
无网格伽辽金法
权函数
支持域
计算精度
element-free Galerkin method
weight function
compact support
computational precision