期刊文献+

最大度是4的可平面图是第一类图的充分条件 被引量:4

Some sufficient conditions for a planar graph of maximum degree four to be Class 1
下载PDF
导出
摘要 运用Discharge方法证明:最大度是4,且满足下列条件之一的可平面图G是第一类的.(1)G中不含长度为4至9的圈;(2)G中不含4-圈和5-圈,且任意两个3-面不关联于同一个顶点;(3)G中不含长度在5和8之间的圈,且任意两个3-圈,任意两个4-圈不关联于同一个顶点;(4)围长不小于4,G中不含有弦的8-圈,且任意两个4-面不关联于同一个顶点. By applying discharging method,we showed that a planar graph G with maximum degree four and girth g is of class 1,if it satisfies one of the following conditions. (1) G does not contain cycles of length from 4 to 9;(2) G does not contain 4-cycles and 5-cycles,and two 3-faces are not incident with a common vertex;(3) G does not contain cycles of length from 5 to 8,and two 3-cycles,two 4-cycles are not incident with a common vertex;(4) g≥4,G does not contain chordal-8-cycle,and two 4-faces are not incident with a common vertex.
作者 倪伟平
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期85-91,共7页 Journal of East China Normal University(Natural Science)
关键词 平面图 边染色 最大度 第一类图 planar graph edge coloring maximum degree Class 1
  • 相关文献

参考文献5

  • 1VIZING V G.Critical graphs with given chromatic class[J].Diskret Analiz,1965(5):9-17.
  • 2LI X,LUO R.Edge coloring of embedded graphs with large girth[J].Graphs Combin,2003,19(3):393-401.
  • 3LAM P,LIU J,SHIU W,et al.Some sufficient conditions for a planar graph to be of classl[J] ,Congr Numer,1999,136:201-205.
  • 4ZHANG L.Every planar with maximum degree 7 is of class 1[J].Graphs Combin,2000(4):467-495.
  • 5SANDERS D P,ZHAO Y.Planar graphs of maximum degree seven are class 1[J].J Combin Theory Ser B,2001,83(2):201-212.

同被引文献26

  • 1VIZING V G. On an estimate of the chromatic index of a p-graph[J]. Diskret Analiz, 1964(3): 25-30.
  • 2VIZING V G. Critical graphs with given chromatic class[J]. Diskret Analiz 1965(5): 9-17.
  • 3ZHANG L. Every planar graph with maximum degree 7 is of class 1 [J]. Graphs Combin, 2000(4): 467-495.
  • 4SANDERS D P, ZHAO Y. Planar graphs of maximum degree seven are class 1[J]. J Combin Theory Ser B, 2001, 83(2): 201-212.
  • 5ZHOU G. A note on graphs of class 1 [J]. Discrete Math, 2003, 262(123): 339-345.
  • 6BU Y, WANG W. Some sufficient conditions for a planar graph of maximum degree six to be class 1 [J]. Discrete Math, 2006, 306(13): 1440-1445.
  • 7WANG W, CHEN Y. A sufficient conditions for a planar graph to be class 1 [J]. Theoretical Computer Science, 2007, 385: 71-77.
  • 8LI X, LUO R. Edge coloring of embedded graphs with large girth[J]. Graphs Combin, 2003, 19(3): 393-401.
  • 9Bu Yuehua,Wang Weifan. Some sufficient conditions for a planar graph of maximum degree six to be class 1 [J]. Discrete Math, 2006,306 (13): 1440-1445.
  • 10Li Xuechao, Luo Rong. Edge coloring of embedded graphs with large girth[J]. Graphs Combin, 2003,19 (3):393-401.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部