期刊文献+

黎曼流形上微分形式的WT类 被引量:2

Weighted WT-classes of Differential Forms on Riemannian Manifolds
下载PDF
导出
摘要 研究拟线性椭圆微分方程与黎曼流形上加权微分形式,定义了2类微分形式,并得到了拟线性椭圆微分方程与黎曼流形上加权微分形式之间的关系. The relations between quasilinear elliptic equations and weighted differential forms on Riemannian manifolds are studied.Two new classes of differential forms are introduced and it is shown that these differential expressions are connected in a natural way to quasilinearelliptic equations.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2010年第3期239-241,共3页 Journal of Hebei University(Natural Science Edition)
基金 河北省自然科学基金资助项目(07M003)
关键词 微分形式 黎曼流形 A-调和方程 differential forms Riemannian manifold A-harmonic equation
  • 相关文献

参考文献8

  • 1BOJARSKI B,IWANIEC T.Analytical foundations of the theory of quasiconformal mappings in Rn[J].Ann Acad Sci Fenn Ser A I Math,1983,8:257-324.
  • 2FRANKE D,MARTIO O,MIKLYUKOV V M,et al.Quasiregular mappings and WT-classes of differential forms on Riemannian manifolds[J].Pacific J of Math,2002,202(1):73-92.
  • 3HEINONEN J,KILPELINEN T,MARTIO O.Nonlinear potential theory of degenerate elliptic equations[M].Oxford:Oxford Univ Press,1993.
  • 4GIAQUINTA M.Multiple integrals in the calculus of variations and nonlinear elliptic systems[M].Princeton:Princeton Univ Press,1983.
  • 5GAO Hongya,CHEN Yanmin.Caccioppoli type inequality for weak solutions of A-harmonic equation and its applications[J].Kyungpook Math J,2004,44:363-368.
  • 6GAO Hongya,GU Zhihua,CHU Yuming.WT classes of differential forms on Riemannian manifolds[J].International Jour of Pure and Appl Math,2008,48(1):73-79.
  • 7STROFFOLINI B.On weakly A-harmonic tensors[J].Studia Math,1995,114(3):289-301.
  • 8GARNETT.Bo unded analytic functions[M].New York:Academic Press,1970.

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部