期刊文献+

基于遗传模拟退火算法的移动机器人静态路径规划 被引量:3

Mobile robot static path planning based on genetic simulated annealing algorithm
下载PDF
导出
摘要 采用多边形法描述了机器人的工作环境模型,应用简化编码长度的技术简化了工作路径编码方式.对于基于遗传算法产生初始路径种群后的各路径的适应值进行评价.经过多次交叉、变异,并借助模拟退火中Metropolis算法的随机移动准则制定了高效的温度更新函数,获得了从起始点到目标点的一条全局最优路径.最后在Visual C++环境中通过仿真验证了此算法的可行性和高效性. The polygon method is used to describe robots' working environment.The change of two-dimensional codes into one-dimensional codes is adopted to simplify the encoding path.A initialization population was produced based on genetic algorithm,and the fitness value of each path is evaluated.A efficient temperature updating function was devised through a series crossover and mutation,and by adopting the random moving rule of Metropolis algorithm.A global optimal path was obtained from the starting point to the target point.Finally,the feasibility and efficiency of this algorithm are verified in the Visual C + + environment.
作者 王艳萍 吴兵
出处 《山东理工大学学报(自然科学版)》 CAS 2009年第5期43-46,共4页 Journal of Shandong University of Technology:Natural Science Edition
关键词 路径规划 移动机器人 遗传算法 模拟退火算法 path-planning mobile robot genetic algorithm simulated annealing algorithm
  • 相关文献

参考文献6

二级参考文献23

  • 1WU K H, CHEN C H, LEE J D. Genetic- based adaptive fuzzy controller for robot path planning[A]. Proceedings of the Fifth IEEE International Conference on Fuzzy Systems [C]. New Orleans :IEEE,1996. (3):1687-1692.
  • 2SADATI N, TAHERI J. Genetic algorithm in robot path planning problem in crisp and fuzzified environments[A].Procedings of IEEE International Conferenee on Industrial Technology [C]. Bangkok,Thailand:IEEE, 2002. (1):11-14.
  • 3WU K H, CHEN C H, LEE J D. A fuzzy potential approach with the cache genetic learning algorithm for robot path planning [A]. Proceedings of IEEE International Conference on Systems, Man and Cybernetics [C]. Canada:IEEE,1995. (1) :478- 482.
  • 4ZHAO M, ANASARI N, HOU E. Mobile manipulator path planning by a genetic algorithm [A]. Proceedings of the International Conference on Intelligent Robots and Systems [C]. USA:IEEE,1992. (1):681-688.
  • 5RAMAKRISHNAN R, ZEIN-SABATTO S. Multiple path planning for a group of mobile robots in a 3D environment using genetic algorithms [A]. Proceedings of IEEE SoutheastCon [C]. South Carolina, USA:IEEE,2001. 65-71.
  • 6RAMAKRISHNAN R, ZEIN-SABATTO S. Multiple path planning for a group of mobile robot in a 2-D environment using genetic algorithms [A]. Proceedings of IEEE SoutheastCon [C]. Columbia, USA:IEEE, 2002. 359- 363.
  • 7HOCAOGLU C. SANDERSON A. Planning multipaths using speciation in genetic algorithms [A].Proceedings of the IEEE International Conference on Evolutionary Computation [C]. Nagoya, Japan: IEEE, 1996. 378-383.
  • 8ALEXOPOULOS C, GRIFFIN P M. Path planning for a mobile robot[J]. IEEE Transactions on Systems. Man and Cybernetics.1992,22(2): 318- 322.
  • 9CHEN L. LIU D Y. An efficient algorithm for finding a collision-free path among polyhedral obstacles[J]. Journal of Robotics Systems, 1990,7 ( 1 ) : 129 -137.
  • 10BORENSTEIN J, KOREN Y. Real-time obstacle avoidance for manipulators and mobile robots[J].IEEE Transactions on Systems, Man and Cybernetics,1989.5(19) : 1179-1187.

共引文献147

同被引文献37

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部