摘要
A new method of numerical seismic stability safety evaluation for a rock slope is proposed based on the analysis of a gravity dam foundation subjected to earthquake loading. The shear strengths of the weak discontinuities are divided by different shear strength reduction ratios (K) and numerical seismic analysis is carried out after the static analysis is completed. With different K values, the curves of the permanent horizontal displacement of key points of the dam foundation (K-displacement curves) are studied. According to the curve change, the distribution of plastic zones in the foundation, and the slow convergence of the finite element method (FEM), the seismic stability safety factor is defined as Kwhen the gravity dam is in the limit equilibrium state subjected to earthquake loading. These concepts were applied to the evaluation of seismic stability safety of a gravity dam for a hydropower project. The analysis of the example shows that the proposed method is feasible and is an effective method of seismic stability safety evaluation.
A new method of numerical seismic stability safety evaluation for a rock slope is proposed based on the analysis of a gravity dam foundation subjected to earthquake loading. The shear strengths of the weak discontinuities are divided by different shear strength reduction ratios (K) and numerical seismic analysis is carried out after the static analysis is completed. With different K values, the curves of the permanent horizontal displacement of key points of the dam foundation (K-displacement curves) are studied. According to the curve change, the distribution of plastic zones in the foundation, and the slow convergence of the finite element method (FEM), the seismic stability safety factor is defined as Kwhen the gravity dam is in the limit equilibrium state subjected to earthquake loading. These concepts were applied to the evaluation of seismic stability safety of a gravity dam for a hydropower project. The analysis of the example shows that the proposed method is feasible and is an effective method of seismic stability safety evaluation.
基金
supported by the National Natural Science Foundation of China (Grant No. 90510017)