期刊文献+

Factor value determination and applicability evaluation of universal soil loss equation in granite gneiss region

Factor value determination and applicability evaluation of universal soil loss equation in granite gneiss region
下载PDF
导出
摘要 Six types of runoff plots were set up and an experimental study was carried out to examine natural rate of soil and water loss in the granite gneiss region of northern Jiangsu Province in China. Through correlation analysis of runoff and soil loss during 364 rainfall events, a simplified and convenient mathematical formula suitable for calculating the rainfall erosivity factor (R) for the local region was established. Other factors of the universal soil loss equation (USLE model) were also determined. Relative error analysis of the soil loss of various plots calculated by the USLE model on the basis of the observed values showed that the relative error ranged from -3.5% to 9.9% and the confidence level was more than 90%. In addition, the relative error was 5.64% for the terraced field and 12.36% for the sloping field in the practical application. Thus, the confidence level was above 87.64%. These results provide a scientific basis for forecasting and monitoring soil and water loss, for comprehensive management of small watersheds, and for soil and water conservation planning in the region. Six types of runoff plots were set up and an experimental study was carried out to examine natural rate of soil and water loss in the granite gneiss region of northern Jiangsu Province in China. Through correlation analysis of runoff and soil loss during 364 rainfall events, a simplified and convenient mathematical formula suitable for calculating the rainfall erosivity factor (R) for the local region was established. Other factors of the universal soil loss equation (USLE model) were also determined. Relative error analysis of the soil loss of various plots calculated by the USLE model on the basis of the observed values showed that the relative error ranged from -3.5% to 9.9% and the confidence level was more than 90%. In addition, the relative error was 5.64% for the terraced field and 12.36% for the sloping field in the practical application. Thus, the confidence level was above 87.64%. These results provide a scientific basis for forecasting and monitoring soil and water loss, for comprehensive management of small watersheds, and for soil and water conservation planning in the region.
出处 《Water Science and Engineering》 EI CAS 2009年第2期87-97,共11页 水科学与水工程(英文版)
关键词 granite gneiss region soil erosion universal soil loss equation factor value applicability evaluation granite gneiss region soil erosion universal soil loss equation factor value applicability evaluation
  • 相关文献

参考文献8

二级参考文献52

共引文献1033

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部