摘要
The electrochemical oxidation degradation processes for artificial and actual wastewater containing ammonia were carried out with a Ti/RuO2-Pt anode and a Ti plate cathode. We studied the effects of different current densities, space sizes between the two electrodes, and amounts of added NaCl on ammonia-containing wastewater treatm.ent. It was shown that, after a 30-min treatment under the optimal conditions, which were a current density of 20 mA/cm2, a space size between the two electrodes of I cm, and an added amount of 0.5 g/L of NaC1, the COD concentration in municipal wastewater was 40 mg/L, a removal rate of 90%; and the NH3-N concentration was 7 mg/L, a removal rate of 88.3%. The effluent of municipal wastewater qualified for Class A of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002).
The electrochemical oxidation degradation processes for artificial and actual wastewater containing ammonia were carried out with a Ti/RuO2-Pt anode and a Ti plate cathode. We studied the effects of different current densities, space sizes between the two electrodes, and amounts of added NaCl on ammonia-containing wastewater treatm.ent. It was shown that, after a 30-min treatment under the optimal conditions, which were a current density of 20 mA/cm2, a space size between the two electrodes of I cm, and an added amount of 0.5 g/L of NaC1, the COD concentration in municipal wastewater was 40 mg/L, a removal rate of 90%; and the NH3-N concentration was 7 mg/L, a removal rate of 88.3%. The effluent of municipal wastewater qualified for Class A of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002).
基金
supported by the Eleventh Five-Year Key Technology Research and Development Program in China (Grant No. 2006BAJ08B04)