期刊文献+

直和空间上对称微分算子自共轭域的辛几何刻画(Ⅱ) 被引量:3

Symplectic Geometry Characterization of Self-Adjoint Domains for Symmetric Differential Operators in Direct Sum Spaces(Ⅱ)
下载PDF
导出
摘要 研究了具有内部奇异点,即直和空间上的二阶对称微分算子辛几何刻画问题。由于对称微分算子在端点处的亏指数取值情况不同,当微分算子在端点处分别取(2,2)和(1,1)时,通过构造商空间,应用辛几何的方法讨论了直和空间的对称微分算子的自共轭扩张问题。给出了与二阶微分算子自共轭域相对应的完全Lagrangian子流型的分类与描述。 The characterization of self-adjoint domains for symmetric differential operators with interior singular points in the direct sum spaces was investigated.By constructing different quotient spaces,using the method of symplectic geometry,self-adjoint extensions of symmetric differential operators in the direct sum spaces for the different deficiency indices at(2,2)and(1,1)singular points was studied.The classification and description of complete Lagrangian submanifold that correspond with self-adjoint domains of second order differential operators were given.
作者 王志敬
出处 《辽宁石油化工大学学报》 CAS 2009年第4期83-86,共4页 Journal of Liaoning Petrochemical University
基金 辽宁省教育厅高校科研项目(2004F100) 辽宁石油化工大学重点学科建设项目(K200409)
关键词 微分算子 辛空间 Lagrangian子流型 奇异点 直和空间 Differential operators Symplectic spaces Lagrangian submanifold Singular points Direct sum spaces
  • 相关文献

参考文献2

二级参考文献7

  • 1崔琦,宋岱才.非奇异H-矩阵的几个判别条件[J].辽宁石油化工大学学报,2007,27(2):80-83. 被引量:10
  • 2郭芳.无穷区间上奇异微分算子自共轭域的辛几何刻画[M].呼和浩特:内蒙古大学图书馆,2005.
  • 3Everitt W N, Mar Kas L. Complex symplectic geometry with applications to ordinary differential operators [J]. Transactions of the American mathematic society ,1999,351(12):4905-4945.
  • 4Li wen ming. The high order differential equrators in direct sum spaces[J]. Joural of differential equations , 1990,84:273-289.
  • 5Cao zhi jiang. On self-adjoint domains of 2-nd order differential operators in limit circle case[J]. Acta math, sinica, new series, 1985 ,1(3):175-180.
  • 6Fu shu-zhong. On the self-adjoint extensions of symme tric odinary differential operators in direct sum spaces[J]. Jouralof differential equations,1992,100:269-291.
  • 7孙炯,王忠.线性算子谱分析[M].北京:科学出版社,2005.

共引文献12

同被引文献7

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部